
DigitalPersona, Inc.

U.are.U SDK
Version 2

Developer Guide

DigitalPersona, Inc.
© 2014 DigitalPersona, Inc. All Rights Reserved.

All intellectual property rights in the DigitalPersona software, firmware, hardware and documentation included with or
described in this guide are owned by DigitalPersona or its suppliers and are protected by United States copyright laws,
other applicable copyright laws, and international treaty provisions. DigitalPersona and its suppliers retain all rights not
expressly granted.

U.are.U® and DigitalPersona® are trademarks of DigitalPersona, Inc. registered in the United States and other countries.
Windows, Windows Server 2003/2008, Windows Vista, Windows 7 and Windows XP are registered trademarks of Microsoft
Corporation. Java is a registered trademark of Oracle and/or its affiliates. All other trademarks are the property of their
respective owners.

This DigitalPersona U.are.U SDK Developer Guide and the software it describes are furnished under license as set forth in
the “License Agreement”.

Except as permitted by such license, no part of this document may be reproduced, stored, transmitted and translated, in
any form and by any means, without the prior written consent of DigitalPersona. The contents of this manual are furnished
for informational use only and are subject to change without notice.

Any mention of third-party companies and products is for demonstration purposes only and constitutes neither an
endorsement nor a recommendation. DigitalPersona assumes no responsibility with regard to the performance or use of
these third-party products.

DigitalPersona makes every effort to ensure the accuracy of its documentation and assumes no responsibility or liability
for any errors or inaccuracies that may appear in it.

Technical Support

To access DigitalPersona technical support resources, go to http://www.digitalpersona.com/support.

Phone support is available at (877) 378-2740 (US) or +1 650-474-4000 (outside the US).

Feedback

Although the information in this guide has been thoroughly reviewed and tested, we welcome your feedback on any
errors, omissions, or suggestions for future improvements. Please contact us at

TechPubs@digitalpersona.com

or

DigitalPersona, Inc.
720 Bay Road, Suite 100
Redwood City, California 94063
USA
(650) 474-4000
(650) 298-8313 Fax

Document Publication Date: February 13, 2014 (Version 2.2.3)

Table of Contents
1 Introduction . 7
What’s New in 2.2.x . 7
How the U.are.U Manuals are Organized . 8
Getting Updated Documentation . 8
Target Audience . 8
Chapter Overview . 9
Data Formats and Standards . 10

2 Background . 11
Biometrics . 11

Features of Biometric Technology . 11
The Basics of Fingerprint Identification . 12

Fingerprint Characteristics . 12
Issues in Fingerprint Recognition Technology . 12

3 Developing Applications . 14
How Fingerprint Recognition Works . 14
Understanding the Data Flow . 15
Workflow - Enrollment Application . 16
Workflow - Identifying/Verifying . 17
Design Issues for your Application . 18

Distributed Processing and Data Flow . 18
Data Compression . 19
NIST Fingerprint Image Quality (NFIQ) . 19
Determining an Acceptable Level of Error . 19
Defining the Data Retention Policy . 20
Specifying the Fingers to Be Scanned . 21
Optimizing Fingerprint Applications . 21

4 Working with Fingerprint Readers . 23

5 Upgrading from Previous SDKs . 24
Overview of Support for Previous SDKs . 24

Working with Existing Data Created with Previous SDKs . 24
Exchanging Data with Applications Using Previous SDKs . 24
Upgrading Applications from Previous SDKs . 24

Converting Applications from One Touch SDK . 25
Working with Data Created with Gold and One Touch SDKs . 25
Changes in U.are.U Terminology from Previous Usage (Gold and One Touch) . 26
DigitalPersona U.are.U SDK Developer Guide iii

Table of Contents
Upgrading from U.are.U UPOS for OPOS/JavaPOS . 27

6 Using the SDK . 28
What’s In the SDK? . 28
FingerJet Engine . 29

7 The C/C++ APIs . 30
DP Capture API . 30

Library Management . 30
Fingerprint Capture Device Management . 31
Capturing Fingerprints . 31
Streaming Fingerprints . 32

FingerJet Engine API . 33
Library Management . 33
Extract FMD . 33
Identify Fingerprint . 33
Enrollment . 33
Advanced Diagnostics . 34
Wavelet Scalar Quantization (WSQ) Compression . 35
NIST Fingerprint Image Quality (NFIQ) . 36

8 The Java API . 38
Importing the U.are.U Java package . 38
Getting Detailed Documentation . 38
Using the Package . 38

Main Access Point . 38
UareUException . 39
Getting a List of Available Readers . 39

Working with Readers . 39
Capturing Fingerprints . 40
Streaming Fingerprints . 40

Accessing the FingerJet Engine . 42
Creating FMDs from images . 42
Identification and Comparison . 42
Enrollment . 44

9 The .NET API . 45
Importing the U.are.U .NET package . 45
Getting Detailed Documentation . 45
Using the Package . 45

Main Access Points . 45
DigitalPersona U.are.U SDK Developer Guide iv

Table of Contents
SDKException . 46
Serialization . 46
IEnumerables in the .NET Wrapper . 46

Working with Readers . 48
Capturing Fingerprints . 51
Streaming Fingerprints . 52

Managing Fingerprint Data . 53
Analyzing and Managing Fingerprints (FingerJet Engine) . 55

Creating FMDs from images . 56
Comparing Fingerprints . 56
Enrollment . 59
Common Data Structures for Results . 60
Pre-Built Controls for Enrollment and Identification . 61

10 ActiveX . 62
Importing the U.are.U ActiveX package . 62
Getting Detailed Documentation . 62
Using the Package . 62

Main Access Points . 62
SDKException . 63
Serialization . 63

Working with Readers . 64
A Note About Internet Explorer and Process Merging . 64
Class Diagrams . 64
Capturing Fingerprints . 67
Streaming Fingerprints . 67

Managing Fingerprint Data . 69
Accessing the FingerJet Engine . 71

Creating FMDs from images . 72
Identification and Comparison . 72
Enrollment . 73
Common Data Structures for Results . 74
Pre-Built Controls for Enrollment and Identification . 75

11 JavaPOS . 76
Terminology Note . 76
Working with Fingerprint Data in JavaPOS . 76

Fingerprint Data for Raw Images (Captures) . 76
Fingerprint Data for Captures and Enrollment Templates (BIRs) . 77
Working with DigitalPersona Record Formats . 77
Converting to a Different Data Format . 78
DigitalPersona U.are.U SDK Developer Guide v

Table of Contents
Getting Device-Specific Information with DirectIOEvent . 78
Implementation Notes . 79
Exceptions . 83
Device-Related Error Codes . 83

12 OPOS . 84
Terminology Note . 84
Working with Fingerprint Data in OPOS . 84

Fingerprint Data for Raw Images (Captures) . 85
Fingerprint Data for Captures and Enrollment Templates (BIRs) . 85
Working with DigitalPersona Record Formats . 86
Converting to a Different Data Format . 86

Getting Device-Specific Information with DirectIOEvent . 86
Implementation Notes . 90
Exceptions . 96
Device-Related Error Codes . 96

13 Application Notes . 98
General Fingerprint Issues . 98
C/C++ Issues . 98

14 Glossary . 99
General Terms . 99
Fingerprint Data . 99
Fingerprint Devices . 100
Fingerprint Recognition Terms . 100
Recognition Accuracy . 101
DigitalPersona U.are.U SDK Developer Guide vi

Introduction 1
DigitalPersona U.are.U SDK Developer Guide
The U.are.U SDK allows you to add fingerprint recognition to your application. Significant features of the U.are.U
SDK include:

 Performing 1-to-many fingerprint identification automatically

 Support for multiple data formats, including the existing DigitalPersona data formats as well as ANSI and
ISO fingerprint images and minutiae data

 Redesigned API for easier programming

 New FingerJet Engine that has met the PIV performance thresholds for fingerprint minutiae data
generation required by NIST, with a faster Matcher.

The SDK provides support for developing with Windows (Visual Studio) and Linux with the following
languages/frameworks: (X indicates a supported combination)

DigitalPersona supports (and this documentation assumes):

1. development on Windows for target devices based on Windows or Windows CE

2. development on Linux for target devices based on Linux or Android

What’s New in 2.2.x
The 2.2.1 release provides Android support.

New features in version 2.2 include:

 Support for U.are.U 5100 fingerprint reader

 New JavaPOS API -- a fully JavaPOS-compliant API, an upgrade from the U.are.U UPOS for JavaPOS SDK.
The new JavaPOS API implements JavaPOS, but is based on the U.are.U framework and the internal

Target Platform Supported

API Linux Windows Windows CE Android

C/C++ X X X X

Java X X X

.NET X X

ActiveX X

JavaPOS X X

OPOS X
7

Chapter 1: Introduction How the U.are.U Manuals are Organized
architecture of the U.are.U SDK. Since the JavaPOS API implements the JavaPOS spec, the terminology
and processes of that API are somewhat different than the other APIs in the U.are.U SDK. If you are
upgrading an existing application, see Upgrading from U.are.U UPOS for OPOS/JavaPOS on page 27 for
more details. The U.are.U JavaPOS API is described in a new chapter of this developer guide: JavaPOS on
page 76.

 New OPOS API -- a fully OPOS-compliant API, an upgrade from the U.are.U UPOS for OPOS SDK. The new
OPOS API is based on the U.are.U framework and the internal architecture of the U.are.U SDK. Since the
OPOS API implements the OPOS spec, the terminology and processes of that API are somewhat different
than the other APIs in the U.are.U SDK. If you are upgrading an existing application, see Upgrading from
U.are.U UPOS for OPOS/JavaPOS on page 27 for more details. The U.are.U OPOS API is described in a new
chapter of this developer guide: OPOS on page 84.

How the U.are.U Manuals are Organized
The U.are.U documentation set consists of a family of books:

 The U.are.U SDK Developer’s Guide (this manual) describes the architecture and organization of the SDK
plus an overview of language/framework support.

 Platform Guides for Linux, Windows, Windows CE and Android provide details about installation,
requirements and code samples for devices based on Linux, Windows, Windows CE and Android
operating systems, respectively.

In addition, we provide Javadoc and Doxygen documentation that provides the detail of method parameters
and data structures for the .NET, ActiveX and Java APIs.

Getting Updated Documentation
If you are viewing this developer guide from the download package for the U.are.U SDK, you may want to check
online at our website at

http://www.digitalpersona.com/Support/Reference-Material/DigitalPersona-SDK-Reference-Material/

for the latest version of this document.

Target Audience
This manual is aimed at developers who already have a working knowledge of their development environment
and their chosen reader platform.

For the C/C++ API, we assume you have a working knowledge of the C++ language.

For .NET developers, we assume that you know how to develop for .NET and understand .NET concepts like
static classes, IDisposable and IEnumerable.
DigitalPersona U.are.U SDK Developer Guide 8

http://www.digitalpersona.com/Support/Reference-Material/DigitalPersona-SDK-Reference-Material/

Chapter 1: Introduction Chapter Overview
For ActiveX, we assume that you know how to develop with ActiveX.

For Java, we assume a working knowledge of the Java language.

For OPOS and JavaPOS, we assume knowledge of the UPOS (OPOS and JavaPOS) specification version 1.13 and
familiarity with Point of Sale applications and developing with OPOS/JavaPOS.

Chapter Overview
Chapter 1, Introduction (this chapter), provides an overview of the features and standards compliance of the
U.are.U SDK.

Chapter 2, Background, contains a brief introduction to fingerprint recognition and fingerprint biometrics.

Chapter 3, Developing Applications describes the context and issues for developing applications using the
U.are.U SDK. This chapter shows how data flows among the U.are.U SDK components, and typical workflows.

Chapter 4, Working with Fingerprint Readers contains information about working with fingerprint reader
hardware.

Chapter 5, Upgrading from Previous SDKs discusses how to upgrade your application to use the current API
functions and data formats, as well as a mapping between the One Touch terminology and the terminology
used in the U.are.U SDK.

Chapter 6, Using the SDK provides an overview of the SDK and describes how to generate API documentation
using Doxygen.

Chapter 7, The C/C++ APIs provides an overview of the functions in the C libraries.

Chapter 8, The Java API describes the interfaces for the Java libraries.

Chapter 9, The .NET API describes the classes and methods in the .NET libraries as well as the .NET controls.

Chapter 10, ActiveX describes the interfaces for the ActiveX libraries and controls.

Chapter 11, JavaPOS describes the JavaPOS API including data management, implementation notes, error
codes and exceptions.

Chapter 12, OPOS describes the OPOS API including data management, implementation notes, error codes and
exceptions.

Chapter 13, Application Notes provides additional suggestions for getting your application to work.

Chapter 14, Glossary lists the terminology specific to fingerprint recognition applications and to the U.are.U
SDK.
DigitalPersona U.are.U SDK Developer Guide 9

Chapter 1: Introduction Data Formats and Standards
Data Formats and Standards
The DigitalPersona U.are.U SDK supports three data types:

 DigitalPersona

 ANSI

 ISO

When fingerprint data is stored in ANSI/ISO format, the following standard formats are supported:

DigitalPersona U.are.U SDK version 2 can process FIDs and raw images generated by other systems as long as
they are compliant with the supported ANSI/ISO standards and:

 Are Uncompressed

 Have horizontal and vertical resolutions that are the same (square pixels)

 Have 8 bits per pixel

For multiview image records, we also require:

 No more than 16 views per finger

 All views in a multiview image must have the same resolution and pixel dimensions (Width x Height)

 We do not support unknown finger positions (finger position = 0).

DigitalPersona U.are.U SDK version 2 can process minutiae data generated by other systems as long as they are
compliant with the supported ANSI/ISO standards and meet this criterion:

 Horizontal and Vertical resolutions are the same (square pixels)

ANSI Standard Supported ISO Standard Supported

Fingerpring Image Data (FID) ANSI INSITS 381-2004 ISO/IEC 19794-4:2005

Fingerprint Minutiae Data (FMD) ANSI INSITS 378-2004 ISO/IEC 19794-2:2005
DigitalPersona U.are.U SDK Developer Guide 10

Background 2
DigitalPersona U.are.U SDK Developer Guide
In this chapter, we discuss the basics of fingerprint recognition. This chapter is not intended to be exhaustive,
rather we’re going to give you enough background knowledge to develop your own application more
effectively.

For a more detailed overview, we recommend Handbook of Fingerprint Recognition by D. Maltoni, M. Maio,
A. Jain, and S. Prabhakar, published by Springer, 2nd edition, 2009.

Biometrics
Identifying individuals based on their distinctive anatomical (fingerprint, face, iris, hand geometry) and
behavioral (signature, voice) characteristics is called biometrics. Because biometric identifiers cannot be
shared or misplaced, they intrinsically represent an individual’s identity. Biometrics is quickly becoming an
essential component of effective identification solutions. Recognition of a person by their body, then linking
that body to an externally established “identity”, forms a powerful authentication tool.

Biometric identification helps to reduce fraud, and enhance user convenience. Among the different biometric
identification methods, fingerprint recognition technology has a good balance of qualities including accuracy,
throughput, size and cost of readers, maturity of technology and convenience of use, making it the dominant
biometric technology in commercial applications.

Features of Biometric Technology
Biometric solutions offer many advantages that other technologies cannot provide.

 Uniqueness - Fingerprints from each one of our ten fingers are distinctive, different from one another and
from those of other persons. Even identical twins have different fingerprints.

 Convenience - Users no longer have to remember multiple, long and complex, frequently changing
passwords or carry multiple keys.

 Non-repudication - Ensures the user is present at the point and time of recognition and later cannot deny
having accessed the system.

 Non-transferable - Cannot be shared, lost, stolen, copied, distributed or forgotten unlike passwords, PINs,
and smart cards.

 Proven - Long history of successful use in identification tasks - the U.S. and other countries have extensive
real-world experience with fingerprint recognition. Fingerprints have been used in forensics for well over
a century and there is a substantial body of scientific studies and real world data supporting the
distinctiveness and permanence of fingerprints.
11

Chapter 2: Background The Basics of Fingerprint Identification
The Basics of Fingerprint Identification
The skin on the inside surfaces of our hands, fingers, feet, and toes is “ridged” or covered with concentric raised
patterns. These ridges are called friction ridges and they provide friction making it easier for us to grasp and
hold onto objects and surfaces without slippage. The many differences in the way friction ridges are patterned,
broken, and forked make ridged skin areas, including fingerprints, distinctive.

The distinctiveness of fingerprints is well established. The underlying biological persistence of fingerprint
characteristics is also a well established fact reported in various fingerprint studies conducted in different
scientific fields over the past century.

Fingerprint Characteristics
Fingerprint ridges are not continuous, straight ridges. Instead, they are broken, forked, interrupted or changed
directionally. The points at which ridges end, fork, and change are called minutiae points which provide
distinctive, identifying information.

The most common properties of fingerprint minutiae points are:

1. Type
There are several types of minutiae points, some of which are listed below. The most common are ridge
endings and ridge bifurcations.

· Ridge ending – the abrupt end of a ridge

· Ridge bifurcation – a single ridge that divides into two ridges

· Short ridge, or independent ridge – a ridge that commences, travels a short distance and then ends

· Island – a single small ridge inside a short ridge or ridge ending that is not connected to all other ridges

· Ridge enclosure – a single ridge that bifurcates and reunites shortly afterward to continue as a single ridge

· Spur – a bifurcation with a short ridge branching off a longer ridge

· Crossover or bridge – a short ridge that runs between two parallel ridges

· Delta – a Y-shaped ridge meeting

· Core – a U-turn in the ridge pattern.

2. Direction

3. Position

Issues in Fingerprint Recognition Technology
In a perfect world, it would be a simple matter to determine whether two fingerprints were from the same
finger-- the images would be identical or they would not. However,
DigitalPersona U.are.U SDK Developer Guide 12

Chapter 2: Background Issues in Fingerprint Recognition Technology
 Even though our fingerprints do not change over time, the fingerprint images can vary a lot, especially for
some people. For example, certain skin conditions and wear due to manual labour can affect fingerprint
images. This makes fingerprint recognition a very challenging problem that does not have a perfect
solution. As the result, captured fingerprint images are often not a perfect match to the stored image
from the same finger.

 Fingerprint images from two different fingers of two different people can look similar, especially when,
because of worn fingerprints or temporary creases, there is very little information left about the actual
fingerprint. The larger the population your are working with, the more likelihood of similar fingerprint
images.

Fingerprint recognition software needs to address these issues. We’ll discuss that more in later sections of this
guide.
DigitalPersona U.are.U SDK Developer Guide 13

Developing Applications 3
DigitalPersona U.are.U SDK Developer Guide
This chapter describes the process of developing fingerprint recognition applications, including:

 An overview of how fingerprint recognition works

 Data structures and data flows among components

 Typical workflows

 Design issues and tradeoffs.

IMPORTANT: The JavaPOS and OPOS APIs conform to the UPOS specification and therefore do not have
exactly the same data structures and workflow as the other APIs in the U.are.U SDK. See
Chapter 11, JavaPOS and Chapter 12, OPOS for details.

How Fingerprint Recognition Works
Fingerprint recognition works in two stages:

1. First, users are enrolled with the system--their fingerprints are captured and stored in a database.

2. Next, when a person needs to be given access (e.g., to open a door or to log in to a computer), they simply
scan their finger on the fingerprint reader.

In terms of application development, this typically requires the developer to build the following components:

1. An application for people to enroll:

 Captures multiple fingerprints for at least two fingers from a fingerprint reader.

 Checks image quality to ensure that a good quality scan is obtained.

 Extracts the fingerprint minutiae.

 Saves the fingerprint images and/or minutiae in a database.

2. A service(s)/application(s) that identifies/verifies people:

 Captures a fingerprint from a fingerprint reader.

 Extracts the fingerprint minutiae.

 Compares fingerprint with enrolled fingerprints to identify a user from a list or verify a specific user.

This SDK provides fingerprint capture, extraction, enrollment and identification/verification functions to help
you develop these components.
14

Chapter 3: Developing Applications Understanding the Data Flow
Understanding the Data Flow
When building a fingerprint recognition application, the data flow consists of:

1. Capture a Fingerprint Image (scan) from the fingerprint reader. The resulting Fingerprint Image Data
(FID) contains one or more fingerprint images, called a Fingerprint Image Views (FIVs). A typical FID for
fingerprint recognition applications contains only one FIV but we also support multiple views (e.g., if
there are multiple fingers from one individual or multiple images from a single finger stored in a single
FID).

Each FIV (fingerprint) is approximately 140K in size.

2. Extract the fingerprint features. During extraction, Fingerprint Minutiae Data (FMD) is created, with each
fingerprint stored in a Fingerprint Minutiae View (FMV) in the FMD. An FMV in an FMD takes no more
than 1.5K (maybe less depending on the fingerprint). FMDs are used for identifying users in a collection
and verifying specific users.

The ANSI and ISO standards permit multiple views but the U.are.U SDK creates only single-view FIDs and FMDs.

This data flow is shown in Figure 1 below. .

Figure 1. Data flow used by U.are.U SDK in fingerprint recognition

A terminology note: in the past, enrollment fingerprints were stored as templates and fingerprints to be
identified/verified were created as feature sets. This data model is still supported when using DigitalPersona
data format - that is there are two kinds of FMD, depending on whether the data is for an enrolled fingerprint or
for a fingerprint to be identified/verified. When using ANSI and ISO standard data, the template/feature set
terminology does not apply since the ANSI/ISO standards do not make that distinction. The data flow for legacy
SDK data may be different, as described in Working with Data Created with Gold and One Touch SDKs on page 25.
DigitalPersona U.are.U SDK Developer Guide 15

Chapter 3: Developing Applications Workflow - Enrollment Application
Workflow - Enrollment Application
During the enrollment process, one or more fingers are scanned for each person. We recommend that you
enroll at least two fingers (more is recommended) because in the event of an accident or injury to one finger,
another enrolled finger can be used to identify the individual.

The enrollment application needs to perform the following steps to enroll a single finger from a user:

Step One - Initialization

Initialize the library. Discover the available readers and open a connection to the reader.

Step Two - Capture, Extract and Enroll

1. Begin the enrollment process.

2. Capture a series of fingerprint scan(s); for each scan,

 Create an FID,

 Extract fingerprint minutiae and create the FMD,

 Add the FMD to the pool of FMDs for enrollment.

3. Continue to capture fingerprints until the enrollment process has enough FMDs to complete the
enrollment. (The enrollment functions evaluate the FMDs and select the best image -- typically several
scans are required.)

4. Create the enrollment FMD and release resources.

Step Three - Store Data

Store the enrollment FMD. Many applications keep only the enrollment FMD because of space constraints or
policy decisions. You cannot use FIDs for identification, so even if you choose to keep the FIDs, you must also
store the FMD for each individual.

Notes on Enrollment

Before storing, you may want to check for existing entries that match the new entry -- applications like law
enforcement, banking or voting registration, may not allow duplicate enrollments.

The capture/extract minutiae part of the enrollment process is the same as for capturing/extracting minutiae
for the purpose of verifying/identifying users. If you wish, you can enroll users without using the enrollment
functions (by simply capturing, extracting minutiae and storing the resulting FMD). However we recommend
that you use the enrollment functions to create the best quality enrollment FMDs.

The enrollment process is slightly different in each API. Consult the chapters that describe the various APIs to
determine the specifics for your language. For JavaPOS and OPOS, the enrollment process is described in the
specification.
DigitalPersona U.are.U SDK Developer Guide 16

Chapter 3: Developing Applications Workflow - Identifying/Verifying
Workflow - Identifying/Verifying
Fingerprint recognition involves two types of operation:

 Identification - Comparing a fingerprint against the database of enrolled fingerprints and confirming
that the fingerprint is enrolled (e.g., to open a door there many be many authorized users).

 Verification - Comparing a fingerprint against a specific user’s enrolled fingerprint(s) to verify a specific
person’s identity (e.g., when the user types their name and then uses a fingerprint rather than a
password).

To perform these operations, your application needs to do the following steps:

Step One - Initialization

Initialize the library. Discover the available readers and open a connection to a reader.

Step Two - Capture and Extract

1. Wait for a fingerprint. When a fingerprint is detected, capture the image and create an FID.

2. Extract fingerprint minutiae and create an FMD.

This sequence is exactly the same as for the capture/extraction process during enrollment.

Step Three - Identify/Verify

Call the appropriate function to verify a specific person OR to identify a valid user.
DigitalPersona U.are.U SDK Developer Guide 17

Chapter 3: Developing Applications Design Issues for your Application
Design Issues for your Application

Distributed Processing and Data Flow
Depending on the capabilities of your fingerprint reader, you can capture FIDs and send them to another
machine for processing OR the fingerprint reader can extract the FMD and transmit only the much smaller FMD
files. Thus the application can be designed in these two ways:

1. The fingerprint capture device can simply capture a fingerprint image and transmit the image to a server
for processing as shown in the image below. Since FIDs are large (around 100K - 140K), this means that
you need a faster connection, but there is less computing power required by the fingerprint reader.

Optionally, the fingerprint capture device can compress the image before transmitting it.

2. Another alternative is to develop software for the fingerprint capture device to capture the fingerprint
image AND extract the fingerprint features to create an FMD. The FMD is then transmitted to the server
for processing, as shown below. FMDs are 1.5K or less and so require less bandwidth and speed.
DigitalPersona U.are.U SDK Developer Guide 18

Chapter 3: Developing Applications Data Compression
Data Compression
If you use compression to save bandwith or storage space, there are two options:

1. U.are.U provides compression using Wavelet Scalar Quantization (WSQ). WSQ is a wavelet-based
compression standard developed by NIST specifically for fingerprint data.

2. You can compress the data using a lossless compression such as JPEG2000.

WSQ Compression

WSQ compression allows compression of 15:1 to 12:1. For more details, see Wavelet Scalar Quantization (WSQ)
Compression on page 35.

JPEG2000 Compression

If you are using JPEG2000 as a compression algorithm, choose 12 as the quality setting. This allows lossless
compression at around 10:1. The U.are.U SDK does not support JPEG2000 compression directly, so you would
have to capture the fingerprint as a raw image and compress it to JPEG2000. After transmission, you must
convert the JPEG2000 file back into a raw image for minutiae extraction and identification/verification.

NIST Fingerprint Image Quality (NFIQ)
The NFIQ score indicates the quality of a fingerprint sample. The U.are.U SDK provides NFIQ calculation using
code developed by NIST. The NFIQ score is in the range 1 – 5, with 1 being the best and 5 being not suitable for
feature extraction. For more details, see NIST Fingerprint Image Quality (NFIQ) on page 36.

Determining an Acceptable Level of Error
When identifying fingerprints, you want to identify strictly enough that you do not let unauthorized people
have access (false positives) but also do not inconvenience legitimate users by rejecting their fingerprints (false
negatives). Note that some people will always experience more false rejections -- the rate of false negatives is a
statistical measure, but individuals may experience higher rejection rates, based on their specific fingerprint
characteristics.

There is a trade-off between the frequencies of false positive and false negative errors. Applications have
control over this trade-off by specifying the threshold for the required degree of similarity between two
fingerprint images in order to call it a match. When choosing the identification threshold, note that
increasing the false positive error rate by a factor of 100 will reduce the false negative error rate only
approximately by a factor of 2.

There will always be some false negatives. As the result, every practical fingerprint recognition system
should have an alternative means to establish and prove identity, without using fingerprints.

Setting the Error Threshold when Identifying a Fingerprint in a Collection

When a fingerprint is scanned, the first step is to identify the fingerprint against a set of stored FMDs.
DigitalPersona U.are.U SDK Developer Guide 19

Chapter 3: Developing Applications Defining the Data Retention Policy
 If you are trying to confirm that a user is allowed access, you will want to identify the fingerprint against all
the valid FMDs that you have stored.

 If you are trying to confirm the identity of a specific person, you must identify against all FMDs for that
individual (typically at least two fingers are stored for each user).

The identification function compares an FMV against a collection of FMDs to produce the candidate list. You
can specify the maximum desired number of candidates: a smaller number can make the execution faster. The
candidate list is sorted by the dissimilarity score, the lower the score the closer the candidate to the beginning
of the list. The best match is the first candidate in the list.

Your threshold determines the trade-off between false positive and false negative error rates where:

 0 = no false positives

 maxint (#7FFFFFFF or 2147483647) = fingerprints do not match at all

 Values close to 0 allow very few false positives; values closer to maxint allow very poor matches (a lot of
false positives) in the candidate list. The table below shows the ralationship between the threshold values
and the false positive identification error rates observed in our test. Note: the actual false positive
identification error rates in your deployment may vary.

For many applications, a good starting point for testing is a threshold of 1 in 100,000. If you want to be
conservative, then you will want to set the threshold lower than the desired error rate (e.g., if you want an error
rate that does not exceed 1 in 100,000, you might set the threshold to 1 in 1,000,000).

Defining the Data Retention Policy
After a fingerprint scan, an FID is created, which contains the actual image. Each fingerprint image takes
roughly 140K of storage. With modern computers, that is not a huge amount, but each enrolled user may have
several fingerprints scanned. Multiplied by the number of potential users, this can add up to a fair amount of
data.

To identify fingerprints, you must extract the fingerprint characteristics to create an FMD, which is < 1.5K per
fingerprint.

Your Threshold

Corresponding False
Positive
Identification Rate

Expected number of False
Positive Identifications Numeric Value of Threshold

.001 * maxint .1% 1 in 1,000 2147483

.0001 * maxint .01% 1 in 10,000 214748

.00001 * maxint .001% 1 in 100,000 21474

1.0e-6 * maxint .0001% 1 in 1,000,000 2147
DigitalPersona U.are.U SDK Developer Guide 20

Chapter 3: Developing Applications Specifying the Fingers to Be Scanned
Some applications choose to retain the full image records, but other companies discard the image record and
retain only the minutiae data in the form of an FMD.

IMPORTANT: If you discard the image record, you cannot reconstruct the original fingerprint image from the
FMD, the FMD is only useful for identifying/verifying fingerprints.

From time to time DigitalPersona may release a new version of the U.are.U SDK that will provide improved
accuracy in the feature extraction process. If you do not retain the fingerprint images, you will not be able to
redo the feature extraction using the new version of the SDK/runtime in order to take advantage of these
improvements.

Specifying the Fingers to Be Scanned
When you enroll people into your system, you will usually want more than one finger enrolled. This allows for
injury and makes it easier for people who have fingerprints that are difficult to recognize. For some applications
you may want to scan all ten fingers or take multiple fingerprint impressions for individual fingers.

A typical policy would be to require both index fingers or both thumbs to be scanned. Thumbs are typically the
worst in terms of recognition accuracy and thumbs require different capture devices with larger area and
different ergonomics. Where possible, avoid any industrial design forcing users to use thumbs.

The preferred approach is to enroll, at a minimum, both index and both middle fingers. Middle fingers are
usually the best, probably because people have almost as good dexterity with middle fingers as with index
fingers, and yet middle fingers have fingerprints that are typically less worn than index fingers.

Some solutions are ergonomically designed in a way that only the right or only the left hand can be used
conveniently. In this case the right hand is better (probably because the majority of people are right handed),
and at least three fingers need to be enrolled: index, middle and ring fingers.

Ergonomics and the correct finger placement are extremely important. Poor ergonomics can easily increase the
false negative identification rate by a factor or 5 to 10. The system users need to be aware of correct finger
placement for best results.

Optimizing Fingerprint Applications
To identify a fingerprint against a large database can take a considerable amount of time and create
unacceptable delays between the fingerprint scan and the user authorization. Identifying fingerprints will be
faster if the database of fingerprints is in memory rather than retrieved from disk. If you have a large database
of users, you may need to provision your server with an appropriate amount of RAM to handle the searches.

This SDK is not optimized for large scale identification. If you are developing such an application, you may want
to contact DigitalPersona to get help selecting the technology that will best fit your needs.
DigitalPersona U.are.U SDK Developer Guide 21

Chapter 3: Developing Applications Optimizing Fingerprint Applications
To ensure the fastest response time, you must weigh whether it will be faster to transmit the image record to a
server for FMD extraction or whether it is faster to extract the FMD on the reader and transmit only the FMD to
the server for identification/verification.

For readers that are used by a limited number of people (e.g., kiosks or pharmacy cabinets), you may have the
device identify fingerprints against a limited set of FMDs. However this requires that you keep the FMDs in the
device in sync with your central database, to ensure that new employees are able to gain access and departing
employees’ privileges are revoked quickly.
DigitalPersona U.are.U SDK Developer Guide 22

Working with Fingerprint Readers 4
DigitalPersona U.are.U SDK Developer Guide
The U.are.U SDK works with the following fingerprint readers:

 U.are.U 4000B Fingerprint Reader Rev. 100 (all platforms) and Rev. 101 48Mhz (Windows CE only)

 U.are.U 4500 Fingerprint Reader Rev. 103

 U.are.U 5100 Fingerprint Reader

The 4xxx series readers have limited support for streaming. Not all platforms have complete support for all
readers -- check the platform guides for more details.

Fingerprint readers can lose their calibration as a result of changes in temperature, humidity and ambient light.
Humidity is the most important environmental factor affecting calibration. U.are.U fingerprint readers are self-
calibrating, but you still might want to set up your application to check periodically that no additional
calibration is needed.

If the fingerprint reader is not giving clear readings:

 Try cleaning it:

 For the 4xxx readers, clean the gel surface with sticky tape. Gently dab it with the sticky side of the tape.
Do not rub it with paper and do not get it wet.

 For the 5xxx readers, in addition to sticky tape, you can use a damp wipe. Do not clean with
compressed air and do not use industrial cleaners or solvents.

 Make sure that you are touching the fingerprint reader with the pad of your finger, not the tip. The most
detail (minutiae) occur roughly midway between the first joint and the tip.

 If your fingers are very dry, try touching your forehead with the pad of the finger you are trying to scan
and then rescanning your fingerprint.

Good ergonomics in the mounting of your fingerprint reader can significantly improve the quality of
fingerprint scans. Be sure that the reader is mounted in a way that is convenient for users to touch properly,
such that the large area of the pad of the finger is captured. The angle at which the reader is mounted as well as
the rim around the sensing area can make it difficult for people with large fingers or long fingernails to have
proper contact between the pad of the finger and the sensing area.

If your fingerprint reader becomes non-responsive from an electrostatic shock you may need to perform a
hardware reset.

Your application should check the reader status between fingerprint scans to ensure that the hardware has not
experienced an error condition.
23

Upgrading from Previous SDKs 5
DigitalPersona U.are.U SDK Developer Guide
Overview of Support for Previous SDKs

Working with Existing Data Created with Previous SDKs
The U.are.U SDKs support DigitalPersona, ANSI, and ISO formats. You may choose your format according to
your application requirements. However, the data formats are not interoperable and only one data format
can be used in a single application. For example, when passing an array of fingerprint templates into the
identification function, all the templates in the array must be in the same format. If your application has existing
data in a specific format, you must continue to use that format for all of your data.

IMPORTANT: It is not possible to convert data from one format to another. If you decide to move from
one format to another, you must re-enroll your user population.

Exchanging Data with Applications Using Previous SDKs
Applications written with the U.are.U SDK APIs can exchange data with applications developed using previous
DigitalPersona products. The table below shows which U.are.U APIs may be used to develop applications that
will exchange data with existing applications:

The U.are.U SDK does not support the custom encryption keys that are supported by the Gold and OneTouch
SDKs.

Upgrading Applications from Previous SDKs
To convert applications developed using Gold and One Touch SDKs to use U.are.U SDK requires software
modifications to use the U.are.U APIs. The U.are.U APIs are described in detail in the other chapters of this
manual.

Applications developed with U.are.U UPOS for JavaPOS or UPOS for OPOS can be upgraded to use the JavaPOS
and OPOS APIs of the U.are.U SDK, since both the previous and the current product support the UPOS
specification. More details are provided below in Upgrading from U.are.U UPOS for OPOS/JavaPOS on page 27.

Previous DigitalPersona SDK used by an existing application U.are.U APIs which are compatible

Gold SDK/Fingerprint Recognition Software C/C++, Java, .NET, ActiveX

One Touch SDKs C/C++, Java, .NET, ActiveX

U.are.U UPOS for JavaPOS JavaPOS

U.are.U UPOS for OPOS OPOS
24

Chapter 5: Upgrading from Previous SDKs Converting Applications from One Touch SDK
Converting Applications from One Touch SDK
To convert an application from One Touch SDK, install the U.are.U SDK as described above and use this
documentation to modify your applications to use the new API.

Be sure to install U.are.U SDK in a new folder on your development machine so that your existing files do
not get overwritten.

Note that when you install the U.are.U SDK on the target reader, the One Touch drivers will be overwritten
with new drivers that are compatible with both your existing applications and new applications based
on U.are.U SDK.

The files installed on the target reader include both drivers and SDK files. If you retain the One Touch SDK files
on the device, you will need up to an additional 120K for the new U.are.U SDK files. If you retain the old SDK files
on the device , you can run applications based on either the old or the new SDK. The two SDKs can coexist and
your existing applications can run using the older run-time environment while you update your programs or
develop new applications based on the new SDK. Applications based on the old and new SDKs can run on the
same hardware, but not simultaneously.

Note that the data from existing applications based on One Touch SDK is fully compatible with applications
based on U.are.U SDK.

Working with Data Created with Gold and One Touch SDKs
The DigitalPersona Gold SDK and One Touch SDK products used a different format for minutiae data (which
were called feature sets). In the Gold and One Touch formats, there were three different data types for minutiae
data which reflected the intended use of the data:

 Pre-registration features (Gold SDK), or Pre-registration Feature Set to be used for Enrollment
(OneTouch SDK); Pre-registration features were intended only for creation of Registration features. An
application needed to collect four fingerprints of the finger to enroll, extract pre-registration features, and
pass it to the SDK to produce registration features.

 Registration features (Gold SDK), or Fingerprint Template (OneTouch SDK); Registration features were
intended to be stored in a database as an enrolled finger.

 Verification features (Gold SDK), or Feature Set (One Touch SDK). Verification features are what is
compared to the Registration features when a user swipes a finger.

In these previous SDKs, you could not compare two Feature Sets, you could only compare a Feature Set against
a Fingerprint Template. The U.are.U SDK removes the distinction between feature sets and templates when
using the ANSI/ISO formats. For data created in ANSI/ISO data formats, all minutiae data is stored in an FMD,
whether produced by the feature extraction functions or the enrollment functions.
DigitalPersona U.are.U SDK Developer Guide 25

Chapter 5: Upgrading from Previous SDKs Changes in U.are.U Terminology from Previous Usage (Gold and One Touch)
Changes in U.are.U Terminology from Previous Usage (Gold and
One Touch)
This section describes changes in terminology from the One Touch documentation and other DigitalPersona products.

Old Term New Term Explanation
Fingerprint authentication Fingerprint verification Change in industry standard terminology.
Fingerprint registration Fingerprint enrollment Change in industry standard terminology.
Fingerprint sensor
(referring to a fingerprint
capture device)

Fingerprint reader Erroneous usage: Sensors are a component of certain
types of fingerprint capture devices, they are not
themselves fingerprint capture devices.

Match

Matching

Matching score

Compare

Comparison

Comparison score

Change in industry standard terminology.

Performance Recognition accuracy More accurate terminology.
Fingerprint feature set

Fingerprint template

Fingerprint minutiae data Fingerprint templates (fingerprint features stored for
enrolled fingers) and fingerprint feature sets (images
used for verification and identification) have been
replaced with fingerprint minutiae data in the U.are.U
family of the SDKs only. With standards-based data
formats in the U.are.U SDKs, all fingerprints are stored
in the same format.

ROC curve DET curve More accurate terminology. We have never used ROC
curves, however our DET curves were sometimes
erroneously called ROC curves in the past.

FAR FMR or FNMR as
appropriate

The definition of FAR is application-specific.

In some applications FAR is similar to FMR while in
other applications, FAR is similar to FNMR.

FRR FMR or FNMR as
appropriate

The definition of FRR is application-specific.

In some applications FRR is similar to FNMR, while in
the others FRR is similar to FMR.
DigitalPersona U.are.U SDK Developer Guide 26

Chapter 5: Upgrading from Previous SDKs Upgrading from U.are.U UPOS for OPOS/JavaPOS
Upgrading from U.are.U UPOS for OPOS/JavaPOS
This new U.are.U SDK version of the OPOS and JavaPOS APIs are backward-compatible. However the following
new features may or may not affect your existing applications:

 The default data format has a longer header. The default data format is now fully compliant with
UnifiedPOS 1.13. The default data format is the same as the old format except that the template header
has additional bytes of information, i.e., a 45-byte header, instead of the previous 10-byte header for
JavaPOS and 12-byte header for OPOS. If you do not update your application to specify a specific format,
new templates will be created with 45-byte headers. Enrollment, identification and verification will
continue to work with both new templates with 45-byte headers and previous templates that have the
shorter headers. See Working with Fingerprint Data in JavaPOS on page 76 and Working with Fingerprint
Data in OPOS on page 84 for more information.

 New FAR Security Setting. We have tightened the FAR security setting to align with our current
corporate standard. The new standard is 100 times more strict. Please update your code accordingly. We
recommend that you allow the FAR setting to be configurable at run-time within your application. See
Chapter 3, Determining an Acceptable Level of Error, on page 19 for more information on setting FAR.

 Enrollment no longer stops at four retries. The previous enrollment process would fail after four
unsuccessful scans. If your application is dependent on having exactly four tries, then you may need to
adjust your code.

 Errors and exceptions may be handled differently. Because of the extensive architectural changes to
this version of the OPOS and JavaPOS APIs, exceptions and error codes may not be identical. You should
double check carefully that the new API handles errors and exceptions as expected for your application.

For specific details about upgrading your existing application, consult JavaPOS on page 76 or OPOS on page 84.
DigitalPersona U.are.U SDK Developer Guide 27

Using the SDK 6
DigitalPersona U.are.U SDK Developer Guide
What’s In the SDK?
The SDK consists of:

1. C/C++ API -- C libraries that conform to ANSI.C99 (http://en.wikipedia.org/wiki/C99):

 DP Capture API - for capturing fingerprints

 FingerJet Engine API - for extracting fingerprint characteristics and identifying/verifying fingerprints

2. .NET API -- .NET class libraries

 DP .NET API - for capturing and comparing fingerprints

 DP .NET Controls - simple interface for enrollment and identification, based on OneTouch interface

 DP ActiveX Library - for capturing and comparing fingerprints using the ActiveX wrapper with .NET

 DP ActiveX Controls - simple interface for enrollment and identification, based on OneTouch interface

3. ActiveX API and controls -- ActiveX class libraries

 DPXUru.dll – ActiveX API library

 DPCtlXUru.dll – ActiveX GUI controls

4. Java API -- Java class libraries

 dpuaru.jar - library classes and interfaces for working with readers and the FingerJet Engine

5. JavaPOS API -- class libraries that implement a JavaPOS-compliant API (per the JavaPOS 1.13
specification), as a wrapper to the U.are.U Java API:

 dpjavapos.jar - library classes and interfaces for working with readers

 JavaPOS Device Service object, which can be used with any JavaPOS Device Control for the Biometrics
device category

6. OPOS API -- classes that implement an OPOS-compliant API (per the UPOS 1.13 specification), as a
wrapper to the U.are.U C/C++ API:

 dpServiceObject.dll – a custom implementation of the OPOS data service

 OPOSBiometrics – a custom implementation of the OPOS biometrics control

7. Run-time components:

 Capture driver and SDK layer

 FingerJet Engine run-time
28

Chapter 6: Using the SDK FingerJet Engine
FingerJet Engine
FingerJet Engine is a module that extracts fingerprint characteristics from image records to create FMDs and
compares FMDs to confirm identity. FingerJet Engine has met the PIV performance thresholds for fingerprint
minutiae data generation required by NIST.

We support a maximum of 16 views in a single FID or FMD during authentication. All views in a single record
must have the same resolution. We do not support unknown finger positions (finger position = 0).
DigitalPersona U.are.U SDK Developer Guide 29

The C/C++ APIs 7
DigitalPersona U.are.U SDK Developer Guide
The C/C++ APIs are available for Linux, Windows and Windows CE. This chapter provides an overview of the
APIs. For details of using the API on a specific reader platform, consult the appropriate Platform Guide.

Detailed documentation for the API is contained in the header files. You can simply read the header files or you
can view the Doxygen files. Consult the platform guide for details of where the Doxygen files are located.

The API is thread-safe.

DP Capture API
The DP Capture API consists of library management, reader management, capturing and streaming.

Library Management

Table 1. Library management functions

Function Description

dpfpdd_init Initialize the library (allocate system resources and
initialize data). This must be the first function called.

dpfpdd_exit Release the library and its resources.

dpfpdd_version Query the library version. This is the only function that
can be called before dpfpdd_init or after dpfpdd_exit.

This returns the DP Capture API library version (not the
U.are.U SDK version). This is analogous to the dpfj_version
function which returns the version of the FingerJet library
file.
30

Chapter 7: The C/C++ APIs Fingerprint Capture Device Management
Fingerprint Capture Device Management

Capturing Fingerprints
The dpfpdd_capture function captures a fingerprint image for

 Enrollment (as part of the process described on page 33)

 Identifying users with dpfj_identify

 Verifying a specific user identity with dpfj_compare

Table 2. Hardware management functions

Function Description

dpfpdd_query_devices Discover connected devices.

dpfpdd_open Open a device. This function establishes an exclusive link
to the device; no other processes will be able to use the
device until you close it. The application must open the
device before use.

dpfpdd_close Close a device.

dpfpdd_get_device_status Get the status for a device. You would normally check the
device status between captures to ensure that the device
is functioning and there are no error conditions.

dpfpdd_get_device_capabilities Query a device for information on capabilities.

dpfpdd_set_parameter Change a device or driver parameter

dpfpdd_get_parameter Query a device or driver parameter

dpfpdd_calibrate Calibrate a reader. Some readers are self-calibrating.
Ambient light or temperature can affect calibration, for
some readers. Calibration can take several seconds.

dpfpdd_reset Do a hardware reset on the reader. Hardware resets are
typically needed only after a hardware problem (e.g., the
device is unplugged or receives an electrostatic shock).
Hardware resets typically only take a few milliseconds.
DigitalPersona U.are.U SDK Developer Guide 31

Chapter 7: The C/C++ APIs Streaming Fingerprints

Streaming Fingerprints
Not all readers support streaming mode. To determine if a specific reader supports this feature, check the value
of can_stream_image in DPFPDD_DEV_CAPS, as returned by
dpfpdd_get_device_capabilities().

The streaming methods are:

Table 4. Streaming Functions

Table 3. Fingerprint capture functions

Function Description

dpfpdd_capture Capture a fingerprint image from the reader. This function
signals the reader that a fingerprint is expected, and waits
til a fingerprint is received.

dpfpdd_cancel Cancel a pending capture

Function Description

dpfpdd_start_stream Start streaming mode

dpfpdd_get_stream_image Capture a fingerprint image from the streaming data

dpfpdd_stop_stream End streaming mode
DigitalPersona U.are.U SDK Developer Guide 32

Chapter 7: The C/C++ APIs FingerJet Engine API
FingerJet Engine API
The FingerJet API contains functions that extract features from FIDs to create FMDs, identify/verify FMDs and
convert FMDs to different formats.

Library Management

Extract FMD

Identify Fingerprint
This function is described in detail on page 17 and page 19.

Enrollment
The enrollment functions allow you to enroll a finger to create an FMD that you can store in your database. For
ANSI/ISO formats, the enrollment functions create FMDs. For legacy DigitalPersona format, the enrollment
functions create a fingerprint template.

Table 5. Library version verification function

Function Description

dpfj_version Query the library version. This returns the FingerJet library
version (not the U.are.U SDK version). This is analogous to
the dpfpfdd_version function which returns the version of
the DP Capture API library file.

Table 6. Feature extraction functions

Function Description

dpfj_create_fmd_from_raw Creates FMD from raw image

dpfj_create_fmd_from_fid Creates FMD from ANSI, ISO or DigitalPersona legacy
format FID

Table 7. Fingerprint identify function

Function Description

dpfj_identify Identify an FMD: given an array of FMDs, this function
returns an array of candidates that match the original
fingerprint (an FMV within an FMD) within the threshold
of error. Supported formats are: Gold SDK, One Touch
SDK, ANSI and ISO.
DigitalPersona U.are.U SDK Developer Guide 33

Chapter 7: The C/C++ APIs Advanced Diagnostics
The typical process would be:

1. Call dpfj_start_enrollment.

2. Capture a fingerprint scan and extract an FMD, using the standard functions (dpfpdd_capture to
capture and dpfj_create_fmd_from_fid or dpfj_create_fmd_from_raw to extract).

3. Call dpfj_add_to_enrollment to add the fingerprint to the potential pool.

4. Repeat the previous two steps until dpfj_add_to_enrollment returns a flag indicating the pool of
FMDs is now sufficient to create an enrollment FMD.

5. Create the enrollment FMD with dpfj_create_enrollment_fmd and release resources by calling
dpfj_finish_enrollment.

6. Store the enrollment FMD in your database. Some applications like voting, banking and law enforcement
require that you check for duplicate fingerprints before storing a new fingerprint in the database.

Table 8. Enrollment Functions

Format Conversion

Table 9. Conversion functions to convert FMDs from legacy formats or between supported formats

Advanced Diagnostics
The majority of applications should use the dpfj_identify function to implement both identification and
verification. However, in a few special cases, e.g., using multi-modal biometrics, or doing statistical risk
assessment, the dpfj_compare function allows you to compare two FMVs to determine their actual degree
of dissimilarity. This is useful for accuracy testing and diagnostics and is not intended to be used in final

Function Description

dpfj_start_enrollment Begin the enrollment process and allocate resources.

dpfj_add_to_enrollment Add the FMD to the pool of FMDs for enrollment and
return a flag indicating that the enrollment is ready
(enough FMDs have been received to create the
enrollment FMD)

dpfj_create_enrollment_fmd Create FMD for enrolled finger

dpfj_finish_enrollment Release resources used during enrollment process

Function Description

dpfj_fmd_convert Convert FMDs from ANSI to ISO format and vice versa.

dpfj_dp_fid_convert Convert legacy DigitalPersona image (Gold SDK and One
Touch SDK) to ANSI or ISO images
DigitalPersona U.are.U SDK Developer Guide 34

Chapter 7: The C/C++ APIs Wavelet Scalar Quantization (WSQ) Compression
applications for actual fingerprint recognition. The dpfj_compare function returns a dissimilarity score
with values:

 0 = fingerprints are NOT dissimilar (i.e., they MATCH perfectly).

 maxint (#7FFFFFFF or 2147483647) = fingerprints are completely dissimilar (i.e., DO NOT match).

 Values close to 0 indicate very close matches, values closer to maxint indicate very poor matches.

The table below shows the relationship between the scores returned from dpfj_compare and the false
match error rates observed in our test. The dissimilarity score distribution is estimated based on our internal
testing, and may not be representative of the actual rate that will be observed in deployment.

Table 10.Fingerprint verification

Wavelet Scalar Quantization (WSQ) Compression
The U.are.U SDK provides compression of fingerprint images with the WSQ algorithm. This compression is
available in two ways:

1. Using code developed by NIST. This code is included within the U.are.U C/C++ API.

2. Using the WSQ1000 SDK from Aware, Inc. on the target system. If the WSQ 1000 SDK is installed, the
U.are.U functions will call the WSQ 1000 functions to do compression and decompression instead of the
native NIST-based code.

DigitalPersona does not redistribute the Aware WSQ1000 SDK, it must be acquired and installed
separately.

At publication time, the WSQ compression functions are available in the U.are.U SDK for Windows and U.are.U
SDK for Linux on x86 and x64 platforms. WSQ compression is not available in the U.are.U SDK for Windows CE
and in the U.are.U SDK for Linux on the ARM platform.

The typical sequence to compress an image would be:

Dissimilarity Score False Match Rate

2147483 .1%

214748 .01%

21474 .001%

2147 .0001%

Function Description

dpfj_compare Compare two FMDs; supported formats are: Gold SDK,
One Touch SDK, ANSI and ISO.
DigitalPersona U.are.U SDK Developer Guide 35

Chapter 7: The C/C++ APIs NIST Fingerprint Image Quality (NFIQ)
 dpfj_start_compression

 dpfj_set_wsq_bitrate or dpfj_set_wsq_size - Set the desired size for the compressed image

 dpfj_compress_fid or dpfj_compress_raw - Compress the FID or raw image

 dpfj_get_processed_data - Retrieve the compressed image

 dpfj_finish_compression

The typical process to decompress an image would be:

 dpfj_start_compression

 dpfj_expand_fid or dpfj_expand_raw - Decompress an FID or raw image

 dpfj_get_processed_data - Retrieve the expanded image

 dpfj_finish_compression

.

NIST Fingerprint Image Quality (NFIQ)
The U.are.U SDK calculates NFIQ scores for fingerprint images. This calculation is available in two ways:

1. Using code developed by NIST. This code is included within the U.are.U C/C++ API.

Table 11.WSQ compression and decompression functions

Function Description

dpfj_start_compression Initiates WSQ compression and allocates resources.

dpfj_finish_compression Releases resources.

dpfj_set_wsq_bitrate
dpfj_set_wsq_size

These two specify the same thing: the size of the resulting
compressed image, and can be used interchangeably.

Setting the bitrate at 0.75bpp to 0.9 bpp allows
compression of 15:1 to 12:1.

The parameter tolerance_aw sets the tolerance as
required by the Aware WSQ1000 SDK and it is ignored
when using NIST algorithm.

dpfj_compress_fid
dpfj_compress_raw

Compress an FID or raw image, according to the
requested size.

dpfj_get_processed_data Retrieve the image that was just compressed/expanded.

dpfj_expand_fid
dpfj_expand_raw

Expand a previously compressed FID or raw image.
DigitalPersona U.are.U SDK Developer Guide 36

Chapter 7: The C/C++ APIs NIST Fingerprint Image Quality (NFIQ)
2. Using the WSQ1000 SDK from Aware, Inc. on the target system. If the WSQ 1000 SDK is installed, the
U.are.U functions will call the WSQ 1000 functions to do NFIQ calculation instead of the native NIST-based
code.

DigitalPersona does not redistribute the Aware WSQ1000 SDK, it must be acquired and installed
separately.

The NFIQ calculation functions are available in U.are.U SDK for Windows, U.are.U SDK for Linux on x86 and x64
platforms. NFIQ calculation functions are not available in the U.are.U SDK for WindowsCE and in the U.are.U SDK
for Linux on the ARM platform.

Table 12.NFIQ Functions

Function Description

dpfj_quality_nfiq_from_fid
dpfj_quality_nfiq_from_raw

Calculate the NFIQ score of an FID or raw image.

NFIQ scores range from 1 to 5 with 1 being the best
quality and 5 indicating that the image is not suitable for
feature extraction.
DigitalPersona U.are.U SDK Developer Guide 37

The Java API 8
DigitalPersona U.are.U SDK Developer Guide
The Java API is built as a wrapper to the C/C++ API. The Java API is available for Linux and Windows. This
chapter provides an overview of the API. For details of using the API on a specific reader platform, consult the
appropriate Platform Guide.

The Java API is considerably simpler to use than the C/C++ APIs and therefore generally results in:

 Easier data management

 Easier enrollment

 Faster development

Importing the U.are.U Java package
The U.are.U Java library classes and interfaces are aggregated into dpuaru.jar. To use the U.are.U Java library
functionality import the com.digitalpersona.uareu.* package, and make sure to include
dpuareu.jar into your classpath.

Getting Detailed Documentation
This chapter provides an overview of the main methods in the Java API. For a complete description of method
parameters, the Javadoc documentation for the Java libraries is provided. Consult the platform guide for details
of where the Javadoc files are located.

Using the Package

Main Access Point
The main access point to the U.are.U Java library is the UareUGlobal class. This is a static class, which allows
you to acquire references to the classes related to fingerprint readers and to the FingerJet Engine:

 To acquire a reference to ReaderCollection use the GetReaderCollection() method. To
destroy ReaderCollection, (release all system resources associated with readers and make readers
available for other processes) use the DestroyReaderCollection() method.

 To acquire a reference(s) to individual readers, use the ReaderCollection object, which is a
collection of objects of type Reader.

 To acquire a reference to the FingerJet Engine use the GetEngine() method. The engine does not
use or allocate any system resources except memory and does not have to be destroyed explicitly.
38

Chapter 8: The Java API UareUException
UareUException
The UareUException interface describes exceptions specific to the U.are.U SDK.

Getting a List of Available Readers
The ReaderCollection interface provides a list of the readers connected to the machine. A list of available
readers can be acquired any time with GetReaders() method.

Working with Readers
Each attached reader is represented with a Reader object. The Reader interface allows:

 Querying reader description and capabilities,

 Acquiring status of the reader,

 Capturing fingerprints,

 Starting and stopping video stream, and

 Resetting and calibrating the reader.

The main methods are:

Table 13.Hardware management methods

Function Description

GetDescription Get the description of a reader. The description is
available at any time (even if the device is not open). This
is the only method that can be called before the open()
method.

Returns an object of type Description holding
information about the reader hardware.

Open Open a device and return the device capabilities. This
method establishes an exclusive link to the device; no
other processes will be able to use the device until you
close it. The application must open the device before use.

GetStatus Get the status for a device. You would normally check the
device status between captures to ensure that the device
is functioning and there are no error conditions.

Returns an object of type ReaderStatus which
describes the current status of the reader.
DigitalPersona U.are.U SDK Developer Guide 39

Chapter 8: The Java API Capturing Fingerprints
Capturing Fingerprints
The Capture function captures a fingerprint image for

 Enrollment (as part of the process described on page 16)

 Identifying users with Identify

 Verifying a specific user identity with Compare

The primary fingerprint capture methods are:

Streaming Fingerprints
Not all readers support streaming mode. To determine if a specific reader supports this feature, get the reader
capabilities with the GetCapabilities method and check the value of the field can_stream.

The streaming methods are:

GetCapabilities Get the capabilities of a device.

Returns an object of type Capabilities which
describes what the reader can do.

Calibrate Calibrate a device. Some devices are self-calibrating.
Ambient light or temperature can affect calibration, for
some devices. Calibration can take several seconds.

Reset Do a hardware reset on the reader. Hardware resets are
typically needed only after a hardware problem (e.g., the
device is unplugged or receives an electrostatic shock).
Hardware resets typically only take a few milliseconds.

Close Close a reader and release the resources associated with
the reader.

Table 14.Fingerprint capture functions

Function Description

Capture Captures a fingerprint image from the open reader. This
function signals the reader that a fingerprint is expected,
and blocks until a fingerprint is received, capture fails or
the reader times out.

CancelCapture Cancel a pending capture

Table 13.Hardware management methods

Function Description
DigitalPersona U.are.U SDK Developer Guide 40

Chapter 8: The Java API Streaming Fingerprints
Table 15.Streaming Functions

Function Description

StartStreaming Put the reader into streaming mode. In this mode, the
application must call GetStreamImage() to
acquire images from the stream.

GetStreamImage Capture a fingerprint image from the streaming data.

After this function returns, the reader remains in
streaming mode.

Frame selection, scoring and other image processing are
not performed by this function.

StopStreaming End streaming mode
DigitalPersona U.are.U SDK Developer Guide 41

Chapter 8: The Java API Accessing the FingerJet Engine
Accessing the FingerJet Engine
The Engine interface provides functionality to

 Extract fingerprint features (create FMDs),

 Identify and compare FMDs, and

 Create enrollment FMDs.

Refer to Understanding the Data Flow on page 15 for a description of enrollment and comparison terminology
and data flow.

Creating FMDs from images
The CreateFmd() method can be used in two ways:

1. Extract fingerprint minutiae from a raw image and create an FMD.

2. Extract fingerprint minutiae from an FID and create an FMD.

The following limitations are applied to the raw images and FIDs:

 8 bits per pixel

 no padding

 square pixels (horizontal and vertical dpi are the same)

The size of the resulting FMD will vary depending on the minutiae in a specific fingerprint.

Identification and Comparison
Identify() identifies a single FMD against an array of FMDs. This function takes as inputs:

 A single view in an FMD

 An array of FMDs (each FMD can contain up to 16 views) to compare

 The desired number of candidates to return

 The threshold for False Positive Identification Rate (FPIR) that is permitted

Each time a view has a score lower than the threshold FPIR, that view is marked as a possible candidate. Then
when all possible candidates are identified (i.e., they meet the threshold), they are ranked by their score. Finally,
the function returns as many candidates as requested, based on the candidates with the lowest dissimilarity
score. For a discussion of setting the threshold as well as the statistical validity of the dissimilarity score and
error rates, consult NIST Fingerprint Image Quality (NFIQ) on page 19.
DigitalPersona U.are.U SDK Developer Guide 42

Chapter 8: The Java API Identification and Comparison
Compare() takes two single views from two FMDs and returns a dissimilarity score indicating the quality of
the match.

The majority of applications should use the Identify method to implement both identification and
verification. However, in a few special cases, e.g., using multi-modal biometrics, or doing statistical risk
assessment, the Compare method allows you to compare two FMVs to determine their actual degree of
dissimilarity. This is useful for accuracy testing and diagnostics and is not intended to be used in final
applications for actual fingerprint recognition. The Compare method returns a dissimilarity score with
values:

 0 = fingerprints are NOT dissimilar (i.e., they MATCH perfectly).

 maxint (#7FFFFFFF or 2147483647) = fingerprints are completely dissimilar (i.e., DO NOT match).

 Values close to 0 indicate very close matches, values closer to maxint indicate very poor matches.

The table below shows the relationship between the scores returned from Compare and the false match error
rates observed in our test. The dissimilarity score distribution is estimated based on our internal testing, and
may not be representative of the actual rate that will be observed in deployment.

Dissimilarity Score False Match Rate

2147483 .1%

214748 .01%

21474 .001%

2147 .0001%

Table 16.Methods for Verifying and Identifying Fingerprints

Function Description

Compare Compare two FMDs; supported formats are: Gold SDK,
One Touch SDK, ANSI and ISO.

Identify Identify an FMD: given an array of FMDs, this function
returns an array of candidates that match the original
fingerprint (an FMV within an FMD) within the threshold
of error. Supported formats are: Gold SDK, One Touch
SDK, ANSI and ISO.
DigitalPersona U.are.U SDK Developer Guide 43

Chapter 8: The Java API Enrollment
Enrollment
CreateEnrollmentFmd() creates and returns an enrollment FMD. It takes as input a reference to an
object of type EnrollmentCallback. The client must implement EnrollmentCallback.GetFmd().
This method acquires and returns an FMD to add to the enrollment. The engine calls
EnrollmentCallback.GetFmd() as many times as needed in order to create an enrollment FMD.

Normally, the client application will implement EnrollmentCallback.GetFmd() to provide the
onscreen UI to capture fingerprints from the reader, extract features using CreateFmd(), and return an
enrollment FMD. If the user wants to cancel the enrollment, EnrollmentCallback.GetFmd() should
return null.
DigitalPersona U.are.U SDK Developer Guide 44

The .NET API 9
DigitalPersona U.are.U SDK Developer Guide
The .NET API is built as a wrapper to the C/C++ APIs. The .NET API is available for Windows and Windows CE.
This chapter provides an overview of the API. For details of using the API on a specific reader platform, consult
the appropriate Platform Guide.

The .NET API is considerably simpler to use than the C/C++ APIs and therefore generally results in:

 Easier data management

 Easier enrollment

 Faster development

The .NET API also implements additional features:

 Serialization

 Pre-built GUI controls for enrollment and identification to quickly get you started

Importing the U.are.U .NET package
The U.are.U .NET library classes are aggregated into the following class libraries:

 DP .NET API - for capturing and comparing fingerprints

 DP .NET Controls - simple interface for enrollment and identification, based on OneTouch interface

Getting Detailed Documentation
This chapter provides an overview of the main methods in the .NET API. For a complete description of method
parameters, the Doxygen documentation for the .NET libraries is provided. Consult the platform guide for
details of where the Doxygen files are located.

Using the Package

Main Access Points
 To acquire a reference to ReaderCollection use the GetReaders() method. To destroy
ReaderCollection, (release all system resources associated with readers and make readers available
for other processes) use the Dispose() method.

 To acquire a reference(s) to individual readers, use the the ReaderCollection object, which is a
collection of objects of type Reader.
45

Chapter 9: The .NET API SDKException
 To work with the FingerJet Engine, instantiate one of the classes: Comparison, Importer,
FeatureExtraction or Enrollment. For example, to start enrolling fingerprints using the
FingerJet engine, call the static method, Enrollment.CreateEnrollmentFmd() . This method
takes as input an enumeration that specifies the format the enrollment template should be in, e.g., ANSI
or ISO. This method also takes an IEnumerable<Fmd> object. See IEnumerables in the .NET Wrapper on
page 46 for more information on IEnumerable<Fmd>.

SDKException
The SDKException class describes exceptions specific to the U.are.U SDK.

Serialization
The .NET API provides the ability to convert an FMD or FID into a format that can be read serially. Serialization
allows you to easily transmit and store data as byte strings, streams or XML. This allows you to transmit the data
or save it to standard file systems. The XML format can be used within HTML for building browser-based
applications.

To return the data to its original format, deserialization is also provided.

Note that serialized FMDs and FIDs include the version number of the .NET wrapper that was used for the
serialization. If you attempt to deserialize with an older version of the .NET wrapper, the results may not be
correct, so when deserializing, the .NET wrapper will throw an SDKException if the serialization was done using
a later version of the wrapper.

Serialization in the .NET Wrapper occurs using the default
System.Xml.Serialization.XmlSerializer. The name of the root element of the generated XML is
the same as the object type. Each public member of the the object is represented as an XML element. Raw byte
data is encoded as a Base-64 string by XmlSerializer.

Deserialization uses the same XmlSerializer. The XML that was serialized is fed into XmlSerializer
where the elements with values become object members with values of the same name as the element.

IEnumerables in the .NET Wrapper
The .NET wrapper uses the IEnumerable<T> interface (as specified here: http://msdn.microsoft.com/en-us/
library/9eekhta0.aspx). An IEnumerable<T> is a data structure of type T that can be iterated through. An array
is one example of IEnumerable<T>, because it can be iterated, or looped through.

An advantage of IEnumerable is that many different data structures can be used instead of requiring a very
specific type of data structure, such as a 1-dimensional array of type T.

Perhaps the most important advantage of IEnumerables is that whatever is responsible for sending an
IEnumerable to a method may use special symantics such as 'yield return' to return only a single item at a
DigitalPersona U.are.U SDK Developer Guide 46

http://msdn.microsoft.com/en-us/library/9eekhta0.aspx

Chapter 9: The .NET API IEnumerables in the .NET Wrapper
time. This helps performance, and also helps programmers simplify their code by allowing .NET wrapper
methods to pull only what is necessary for the operation.

For example, Enrollment.CreateEnrollmentFmd(IEnumerable<Fmd>) can iterate through a
user’s FMDs until enough data is captured and then create an enrollment FMD, as opposed to having more data
than is necessary. Each iteration can can cause a capture workflow to occur which causes ‘yield return’ to
return a single item to Enrollment.

NOTE: The yield return feature of IEnumerable is available in C# but NOT in VB.NET.

For more information on IEnumerable<T>, consult the Microsoft documentation pages listed below.

Topic Microsoft Documentation

IEnumerable<T> http://msdn.microsoft.com/en-us/library/
9eekhta0.aspx

Yield http://msdn.microsoft.com/en-us/library/
9k7k7cf0(v=vs.80).aspx
DigitalPersona U.are.U SDK Developer Guide 47

http://msdn.microsoft.com/en-us/library/9eekhta0.aspx
http://msdn.microsoft.com/en-us/library/9k7k7cf0(v=vs.80).aspx

Chapter 9: The .NET API Working with Readers
Working with Readers
Readers are accessed through the ReaderCollection object, which is of type IEnumerable<Reader>.

Each attached reader is represented with a Reader object. The Reader interface allows:

 Querying reader description and capabilities,

 Acquiring status of the reader,

 Capturing fingerprints,

 Starting and stopping image stream, and

 Resetting and calibrating the reader.

To acquire a reader, call ReaderCollection.GetReaders() which returns the attached readers. Iterate
through this list to look at the description object for the desired reader. Once finished with all of the Reader
objects in the ReaderCollection, ensure that you call the Dispose() method to un-instantiate the
ReaderCollection object and release system resources.

The UML diagrams below show the ReaderCollection and Reader classes.
DigitalPersona U.are.U SDK Developer Guide 48

Chapter 9: The .NET API Working with Readers
DigitalPersona U.are.U SDK Developer Guide 49

Chapter 9: The .NET API Working with Readers
DigitalPersona U.are.U SDK Developer Guide 50

Chapter 9: The .NET API Capturing Fingerprints
The main methods for managing reader hardware in the Reader class are:

Capturing Fingerprints
The Capture function captures a fingerprint image for

 Enrollment (as part of the process described on page 16)

 Identifying users with Identify

 Verifying a specific user identity with Compare

The primary fingerprint capture methods are:

Table 17.Hardware management methods

Function Description

Open Open a device and return the device capabilities. This
method establishes an exclusive link to the device; no
other processes will be able to use the device until you
close it. The application must open the device before use.

GetStatus Get the status for a device. You would normally check the
device status between captures to ensure that the device
is functioning and there are no error conditions.

Returns an object of type ReaderStatus which
describes the current status of the reader.

Calibrate Calibrate a device. Some devices are self-calibrating.
Ambient light or temperature can affect calibration, for
some devices. Calibration can take several seconds.

Reset Do a hardware reset on the reader. Hardware resets are
typically needed only after a hardware problem (e.g., the
device is unplugged or receives an electrostatic shock).
Hardware resets typically only take a few milliseconds.

Dispose Close device, release memory, remove child objects.

Table 18.Fingerprint capture functions

Function Description

Capture Captures a fingerprint image from the open reader. This
function signals the reader that a fingerprint is expected,
and blocks until a fingerprint is received, capture fails or
the reader times out.

CancelCapture Cancel a pending capture
DigitalPersona U.are.U SDK Developer Guide 51

Chapter 9: The .NET API Streaming Fingerprints
Streaming Fingerprints
Not all readers support streaming mode. To determine if a specific reader supports this feature, check the value
of the reader property CanStream.

The streaming methods are:

Table 19.Streaming Functions

Function Description

StartStreaming Put the reader into streaming mode. In this mode, the
application must call GetStreamImage() to
acquire images from the stream.

GetStreamImage Capture a fingerprint image from the streaming data.

After this function returns, the reader remains in
streaming mode.

Frame selection, scoring and other image processing are
not performed by this function.

StopStreaming End streaming mode
DigitalPersona U.are.U SDK Developer Guide 52

Chapter 9: The .NET API Managing Fingerprint Data
Managing Fingerprint Data
The .NET API implements fingerprint data as shown in the UML diagram below and on the next page.

In addition to the usual methods for working with data, this class includes the methods below for serializing
and deserializing (as described in Importing the U.are.U .NET package on page 45.

Table 20.Serializing and Deserializing

Function Description

SerializeXml Static method which serializes FMDs and FIDs into an XML
string. Note that raw data is encoded as base-64.

DeserializeXml Static method which de-serializes XML-encoded FMDs
and FIDs back into a U.are.U FMD or FID data structure.
DigitalPersona U.are.U SDK Developer Guide 53

Chapter 9: The .NET API Managing Fingerprint Data
DigitalPersona U.are.U SDK Developer Guide 54

Chapter 9: The .NET API Analyzing and Managing Fingerprints (FingerJet Engine)
Analyzing and Managing Fingerprints (FingerJet Engine)
The FingerJet Engine interfaces provide functionality to

 Extract fingerprint features (create FMDs),

 Identify and compare FMDs, and

 Create enrollment FMDs.

Refer to Understanding the Data Flow on page 15 for a description of enrollment and comparison terminology
and data flow.

The Classes for working with data (including identify and verify) are:

Class Description

Comparison This class allows you to perform:

 Verification

 Identification

Enrollment To enroll a user, you must call:

CreateEnrollmentFMD

Enrollment is implemented as a static class -- you can
provide an IEnumerable<Fmd> or a function that
returns such.

Importer The U.are.U SDK supports multiple formats for FMDs
and FIDs. You can import any supported format.

FeatureExtraction Extract features from an FID or raw image.
DigitalPersona U.are.U SDK Developer Guide 55

Chapter 9: The .NET API Creating FMDs from images
The UML diagram below provides more detail.

Creating FMDs from images
The CreateFmdFromFid() method can be used in two ways:

1. Extract fingerprint minutiae from a raw image and create an FMD.

2. Extract fingerprint minutiae from an FID and create an FMD.

The following limitations are applied to the raw images and FIDs:

 8 bits per pixel

 no padding

 square pixels (horizontal and vertical dpi are the same)

The size of the resulting FMD will vary depending on the minutiae in a specific fingerprint.

Comparing Fingerprints
Identify() identifies a single FMD against an array of FMDs. This function takes as inputs:

 A single view in an FMD

 An array of FMDs (each FMD can contain up to 16 views) to compare

 The desired number of candidates to return

 The threshold for False Positive Identification Rate (FPIR) that is permitted
DigitalPersona U.are.U SDK Developer Guide 56

Chapter 9: The .NET API Comparing Fingerprints
and returns matches as an array of integer pairs which provide the finger index and view index of each match.

Each time a view has a score lower than the threshold FPIR, that view is marked as a possible candidate. Then
when all possible candidates are identified (i.e., they meet the threshold), they are ranked by their score. Finally,
the function returns as many candidates as requested, based on the candidates with the lowest dissimilarity
score. For a discussion of setting the threshold as well as the statistical validity of the dissimilarity score and
error rates, consult NIST Fingerprint Image Quality (NFIQ) on page 19.

Compare() takes two single views from two FMDs and returns a dissimilarity score indicating the quality of
the match.

The majority of applications should use the Identify method to implement both identification and
verification. However, in a few special cases, e.g., using multi-modal biometrics, or doing statistical risk
assessment, the Compare method allows you to compare two FMVs to determine their actual degree of
dissimilarity. This is useful for accuracy testing and diagnostics and is not intended to be used in final
applications for actual fingerprint recognition. The Compare method returns a dissimilarity score with
values:

 0 = fingerprints are NOT dissimilar (i.e., they MATCH perfectly).

 maxint (#7FFFFFFF or 2147483647) = fingerprints are completely dissimilar (i.e., DO NOT match).

 Values close to 0 indicate very close matches, values closer to maxint indicate very poor matches.

The table below shows the relationship between the scores returned from Compare and the false match error
rates observed in our test. The dissimilarity score distribution is estimated based on our internal testing, and
may not be representative of the actual rate that will be observed in deployment.

Dissimilarity Score False Match Rate

2147483 .1%

214748 .01%

21474 .001%

2147 .0001%
DigitalPersona U.are.U SDK Developer Guide 57

Chapter 9: The .NET API Comparing Fingerprints
Table 21.Methods for Verifying and Identifying Fingerprints

Function Description

Compare Compare two FMDs; supported formats are: Gold SDK,
One Touch SDK, ANSI and ISO.

Identify Identify an FMD: given an array of FMDs, this function
returns an array of candidates that match the original
fingerprint (an FMV within an FMD) within the threshold
of error. Supported formats are: Gold SDK, One Touch
SDK, ANSI and ISO.
DigitalPersona U.are.U SDK Developer Guide 58

Chapter 9: The .NET API Enrollment
Enrollment
CreateEnrollmentFmd() creates and returns an enrollment FMD. The method takes as input an
enumeration which defines which format to use, e.g., ANSI or ISO. This method also takes as input an
IEnumerable<Fmd> object type. See IEnumerables in the .NET Wrapper on page 46 for a brief description. As
IEnumerable<Fmd> pertains to Enrollment, you may either send an array of FMDs to
CreateEnrollmentFmd() because simple arrays satisfy the IEnumerable<Fmd> interface. You may also
send a method which returns IEnumerable<Fmd>. Here is an example that uses an IEnumerable<Fmd>
method. To keep the example simple, error checking is removed:

// Create an enrollment Fmd.
DataResult<Fmd> enrollmentResult = Enrollment.CreateEnrollmentFmd(
Constants.Formats.Fmd.ANSI,
CaptureExtractFmd()
);

Here is a function which captures and extracts an FMD, then returns IEnumerable<Fmd>: (the full version of
this code is in the code sample)

// Capture and extract an FMD and return as IEnumerable<Fmd>.
private IEnumerable<Fmd> CaptureAndExtractFmd()
{
while (true)
{

// !!! Get Status and ensure that status is DP_STATUS_READY before continuing
// Capture a fingerprint.
CaptureResult captureResult = m_reader.Capture(

Constants.Formats.Fid.ANSI,
Constants.CaptureProcessing.DP_IMG_PROC_DEFAULT,

/* Default processing used. */
-1,

/* No timeout. */
reader.Capabilities.Resolutions[0]

/* A resolution that is available to reader. */
);

// !!! Check for errors, use ‘yield return null; or break;’ to stop.
yield return convertResult.Data;

}
}

In VB.NET, the IEnumerable<T> class does not exist. The recommended method to enroll FMDs using
VB.NET is to send CreateEnrollmentFmd() four captured FMDs in an array. If four FMDs is not enough,
add a fifth captured and converted FMD to the array and send to CreateEnrollmentFMD(), and so on until
an FMD is created.
DigitalPersona U.are.U SDK Developer Guide 59

Chapter 9: The .NET API Common Data Structures for Results
Common Data Structures for Results
The following classes are used when data is returned as a result of a U.are.U .NET operation.
DigitalPersona U.are.U SDK Developer Guide 60

Chapter 9: The .NET API Pre-Built Controls for Enrollment and Identification
Pre-Built Controls for Enrollment and Identification
In addition to the basic API, the SDK contains two pre-built controls that allow you to quickly add enrollment or
identification into your application. These controls provide the same functionality as the DigitalPersona One
Touch products.
DigitalPersona U.are.U SDK Developer Guide 61

ActiveX 1
DigitalPersona U.are.U SDK Developer Guide
0

The ActiveX API and controls are built as a wrapper to the C/C++ APIs.

The ActiveX API is available for Windows.

This chapter provides an overview of the API. For details of using the API on Windows-based readers, consult
the U.are.U SDK Platform Guide for Windows.

Note that ActiveX is a Microsoft technology and is not supported on Mozilla Firefox and Google Chrome.

Importing the U.are.U ActiveX package
The U.are.U ActiveX library classes are aggregated into two DLLs:

 DPXUru.dll – ActiveX API library

 DPCtlXUru.dll – ActiveX GUI controls

Getting Detailed Documentation
This chapter provides an overview of the main methods in the ActiveX API. For a complete description of
method parameters, the Doxygen documentation for the ActiveX libraries is provided. Consult the platform
guide for details of where the Doxygen files are located.

Using the Package

Main Access Points
The main access point to the U.are.U ActiveX library is the XReaderCollection class.

 To acquire a reference to XReaderCollection use the GetReaders() method. To destroy
XReaderCollection, (release all system resources associated with readers and make readers available
for other processes) use the Dispose() method.

 To acquire a reference(s) to individual readers, use the the XReaderCollection object, which is a
collection of objects of type XReader.

 To work with the FingerJet Engine, instantiate one of the classes: XComparison, XImporter,
XFeatureExtraction or XEnrollment. For example, to start enrolling fingerprints using the
FingerJet engine, call the static method, Enrollment.CreateEnrollmentFmd() . This method
takes as input an enumeration that specifies the format the enrollment template should be in, e.g., ANSI
62

Chapter 10: ActiveX SDKException
or ISO. This method also takes an IEnumerable<Fmd> object. See IEnumerables in the .NET Wrapper on
page 46 for more information on IEnumerable<Fmd>.

SDKException
The SDKException class describes exceptions specific to the U.are.U SDK.

Serialization
The ActiveX API provides the ability to convert an FMD or FID into a format that can be read serially.
Serialization allows you to easily transmit and store data as byte strings, streams or XML. This allows you to
transmit the data or save it to standard file systems. The XML format can be used within HTML for building
browser-based applications.

To return the data to its original format, deserialization is also provided.

Note that serialized FMDs and FIDs include the version number of the ActiveX API that was used for the
serialization. If you attempt to deserialize with an older version of the API, the results may not be correct, so
when deserializing, the API will throw an SDKException if the serialization was done using a later version of the
wrapper.

Serialization in the API occurs using the default System.Xml.Serialization.XmlSerializer. The
name of the root element of the generated XML is the same as the object type. Each public member of the the
object is represented as an XML element. Raw byte data is encoded as a Base-64 string by XmlSerializer.

Deserialization also uses XmlSerializer. The XML that was serialized is fed into XmlSerializer where
the elements with values become object members with values of the same name as the element.
DigitalPersona U.are.U SDK Developer Guide 63

Chapter 10: ActiveX Working with Readers
Working with Readers
Readers are accessed through the XReaderCollection object, which is a collection of XReader objects.

Each attached reader is represented with a XReader object. The XReader interface allows:

 Querying reader description and capabilities,

 Acquiring status of the reader,

 Capturing fingerprints,

 Starting and stopping image stream, and

 Resetting and calibrating the reader.

To acquire a reader, first instantiate a XReaderCollection object and call
XReaderCollection.GetReaders() which returns the attached readers. Iterate through this list to look
at the description object for the desired reader. Once finished with all of the XReader objects in the
XReaderCollection, ensure that you call the Dispose() method to destroy the
XReaderCollection object and release system resources.

A Note About Internet Explorer and Process Merging
By default, Internet Explorer merges browser processes where it can, beginning with IE8. If your application is
open in more than one browser window, users may experience erroneous behavior when your application calls
XReader.Dispose() from one window.

To prevent this, users can use the File > New Session command to open a new window that does not merge
processes with existing windows. You can also prevent IE from merging processes by using the -nomerge
command line option when launching IE OR change the registry setting of HKEY_CURRENT
_USER\Software\Microsoft\Internet Explorer\Main to set SessionMerging to 0. Note
however that these options will affect IE's efficiency and startup time.

Class Diagrams
The UML diagrams below show the XReaderCollection and XReader classes.
DigitalPersona U.are.U SDK Developer Guide 64

Chapter 10: ActiveX Class Diagrams
DigitalPersona U.are.U SDK Developer Guide 65

Chapter 10: ActiveX Class Diagrams
The main reader hardware management methods in the XReader class are:

Table 22.Hardware management methods

Function Description

Open Open a device and return the device capabilities. This
method establishes an exclusive link to the device; no
other processes will be able to use the device until you
close it. The application must open the device before use.

GetStatus Get the status for a device. You would normally check the
device status before captures to ensure that the device is
functioning and there are no error conditions.

Returns an object of type ReaderStatus which
describes the current status of the reader.

Calibrate Calibrate a device. Some devices are self-calibrating.
Ambient light or temperature can affect calibration, for
some devices. Calibration can take several seconds.
DigitalPersona U.are.U SDK Developer Guide 66

Chapter 10: ActiveX Capturing Fingerprints
Capturing Fingerprints
The Capture function of the XReader class captures a fingerprint image for

 Enrollment (as part of the process described on page 16)

 Identifying users with Identify

 Verifying a specific user identity with Compare

The primary fingerprint capture methods are:

Streaming Fingerprints
Not all readers support streaming mode. To determine if a specific reader supports this feature, check the value
of the XReader property CanStream.

The streaming methods in XReader are:

Reset Do a hardware reset on the reader. Hardware resets are
typically needed only after a hardware problem (e.g., the
device is unplugged or receives an electrostatic shock).
Hardware resets typically only take a few milliseconds.

Dispose Close device, release memory, remove child objects.

Table 23.Fingerprint capture functions

Function Description

Capture Captures a fingerprint image from the open reader. This
function signals the reader that a fingerprint is expected,
and blocks until a fingerprint is received, capture fails or
the reader times out.

CancelCapture Cancel a pending capture

Table 22.Hardware management methods

Function Description
DigitalPersona U.are.U SDK Developer Guide 67

Chapter 10: ActiveX Streaming Fingerprints
Table 24.Streaming Functions

Function Description

StartStreaming Put the reader into streaming mode. In this mode, the
application must call GetStreamImage() to
acquire images from the stream.

GetStreamImage Capture a fingerprint image from the streaming data.

After this function returns, the reader remains in
streaming mode.

Frame selection, scoring and other image processing are
not performed by this function.

StopStreaming End streaming mode
DigitalPersona U.are.U SDK Developer Guide 68

Chapter 10: ActiveX Managing Fingerprint Data
Managing Fingerprint Data
The ActiveX API implements fingerprint data as shown in the UML diagram below:
DigitalPersona U.are.U SDK Developer Guide 69

Chapter 10: ActiveX Managing Fingerprint Data
In addition to the usual methods for working with data, this class includes the methods below for serializing
and deserializing (as described in Importing the U.are.U .NET package on page 45.

Table 25.Serializing and Deserializing

Function Description

SerializeXml Static method which serializes FMDs and FIDs into an XML
string. Note that raw data is encoded as base-64.

DeserializeXml Static method which de-serializes XML-encoded FMDs
and FIDs back into a U.are.U FMD or FID data structure.
DigitalPersona U.are.U SDK Developer Guide 70

Chapter 10: ActiveX Accessing the FingerJet Engine
Accessing the FingerJet Engine
The FingerJet Engine interfaces provide functionality to

 Extract fingerprint features (create FMDs),

 Identify and compare FMDs, and

 Create enrollment FMDs.

Refer to Understanding the Data Flow on page 15 for a description of enrollment and comparison terminology
and data flow.

The UML diagram below shows the relevant classes:
DigitalPersona U.are.U SDK Developer Guide 71

Chapter 10: ActiveX Creating FMDs from images
Creating FMDs from images
The CreateFmdFromFid() method can be used in two ways:

1. Extract fingerprint minutiae from a raw image and create an FMD.

2. Extract fingerprint minutiae from an FID and create an FMD.

The following limitations are applied to the raw images and FIDs:

 8 bits per pixel

 no padding

 square pixels (horizontal and vertical dpi are the same)

The size of the resulting FMD will vary depending on the minutiae in a specific fingerprint.

Identification and Comparison
Identify() identifies a single FMD against an array of FMDs. This function takes as inputs:

 A single view in an FMD

 An array of FMDs (each FMD can contain up to 16 views) to compare

 The desired number of candidates to return

 The threshold for False Positive Identification Rate (FPIR) that is permitted

and returns matches as an array of integer pairs which provide the finger index and view index of each match.

Each time a view has a score lower than the threshold FPIR, that view is marked as a possible candidate. Then
when all possible candidates are identified (i.e., they meet the threshold), they are ranked by their score. Finally,
the function returns as many candidates as requested, based on the candidates with the lowest dissimilarity
score. For a discussion of setting the threshold as well as the statistical validity of the dissimilarity score and
error rates, consult NIST Fingerprint Image Quality (NFIQ) on page 19.

Compare() takes two single views from two FMDs and returns a dissimilarity score indicating the quality of
the match.

The majority of applications should use the Identify method to implement both identification and
verification. However, in a few special cases, e.g., using multi-modal biometrics, or doing statistical risk
assessment, the Compare method allows you to compare two FMVs to determine their actual degree of
dissimilarity. This is useful for accuracy testing and diagnostics and is not intended to be used in final
applications for actual fingerprint recognition. The Compare method returns a dissimilarity score with
values:

 0 = fingerprints are NOT dissimilar (i.e., they MATCH perfectly).
DigitalPersona U.are.U SDK Developer Guide 72

Chapter 10: ActiveX Enrollment
 maxint (#7FFFFFFF or 2147483647) = fingerprints are completely dissimilar (i.e., DO NOT match).

 Values close to 0 indicate very close matches, values closer to maxint indicate very poor matches.

The table below shows the relationship between the scores returned from Compare and the false match error
rates observed in our test. The dissimilarity score distribution is estimated based on our internal testing, and
may not be representative of the actual rate that will be observed in deployment.

Enrollment
CreateEnrollmentFmd() creates and returns an enrollment FMD. The method takes as input:

 Which format to use, e.g., ANSI or ISO

 An ArrayList object containing the FMDs to enroll

The recommended sequence in which to enroll FMDs is to send CreateEnrollmentFmd() four captured
FMDs in an array. If four FMDs is not enough, you can capture an FID, convert it to an additional FMD, add it to
the array and call CreateEnrollmentFMD() again. If CreateEnrollmentFMD(), fails again, you can
continue to add FMDs to the array and call CreateEnrollmentFMD() until an enrollment FMD is created
successfully.

Dissimilarity Score False Match Rate

2147483 .1%

214748 .01%

21474 .001%

2147 .0001%

Table 26.Methods for Verifying and Identifying Fingerprints

Function Description

Compare Compare two FMDs; supported formats are: Gold SDK,
One Touch SDK, ANSI and ISO.

Identify Identify an FMD: given an array of FMDs, this function
returns an array of candidates that match the original
fingerprint (an FMV within an FMD) within the threshold
of error. Supported formats are: Gold SDK, One Touch
SDK, ANSI and ISO.
DigitalPersona U.are.U SDK Developer Guide 73

Chapter 10: ActiveX Common Data Structures for Results
Common Data Structures for Results
The following classes are used when data is returned as a result of a U.are.U ActiveX operation.
DigitalPersona U.are.U SDK Developer Guide 74

Chapter 10: ActiveX Pre-Built Controls for Enrollment and Identification
Pre-Built Controls for Enrollment and Identification
In addition to the basic API, the SDK contains two pre-built controls that allow you to quickly add enrollment or
identification into your application. These controls provide the same functionality as the DigitalPersona One
Touch products.
DigitalPersona U.are.U SDK Developer Guide 75

JavaPOS 1
DigitalPersona U.are.U SDK Developer Guide
1

The U.are.U JavaPOS API is built on the U.are.U Java API. This JavaPOS API is geared for Point of Sale applications
and has the following features:

 Fully compliant with JavaPOS 1.13. The U.are.U JavaPOS API conforms to the specifications for the
Biometrics device category in Chapter 5, “Biometrics,” of the UnifiedPOS Retail Peripheral Architecture,
Version 1.13 (July 15, 2009). The complete UPOS documentation is available at http://www.nrf-arts.org/
UnifiedPOS/default.htm.

 Backward compatible with DigitalPersona’s previous JavaPOS product (U.are.U UPOS for JavaPOS
SDK), with only a few caveats. This new API is the result of merging the previous JavaPOS SDK with the
U.are.U SDK - the internal architecture has been completely rewritten. For users of the previous SDK, the
updated SDK means an upgraded internal architecture for more robust performance -- up to ten times
faster for identification. If you are upgrading an existing application, see Upgrading from U.are.U UPOS for
OPOS/JavaPOS on page 27 for more details.

 In addition to the JavaPOS API, the U.are.U SDK includes a JavaPOS Device Service object, which can
be used with any JavaPOS Device Control for the Biometrics device category.

 Because the JavaPOS API is built as an adjunct to the Java API, applications can use both the
JavaPOS standard operations AND use the U.are.U Java API (described in The Java API on page 38).
Java methods can be used to access streaming features or to import data.

Terminology Note
The U.are.U JavaPOS API conforms to the standard terminology used by the JavaPOS spec from 2009 whereas
the other APIs in the U.are.U SDK generally use terminology that matches evolving industry standards. If you
are going to use the U.are.U Java API along with JavaPOS, you need to note that in JavaPOS, the extracted
fingerprint data (template) is stored in a biometric information record (BIR). The templates created through
enrollment and capture are equivalent to Fingerprint Minutiae Data (FMD) records in the other APIs of the
U.are.U SDK. Note that JavaPOS templates include a 10- or 45-byte JavaPOS header in addition to the data itself.

Working with Fingerprint Data in JavaPOS
The U.are.U JavaPOS API provides two types of fingerprint data: raw images and fingerprint templates. The data
flow for JavaPOS applications is the same as described in Chapter 3, Understanding the Data Flow, on page 15
except that JavaPOS data has additional JavaPOS headers and JavaPOS does not use the FID/FMD terminology
used by U.are.U. Note that there is no easy method provided in the API for converting data from JavaPOS BIRs to
FMDs.

Fingerprint Data for Raw Images (Captures)
Per the JavaPOS spec, raw fingerprint scans (images) are available in the RawSensorData property when
StatusUpdateEvent triggers.
76

http://www.nrf-arts.org/UnifiedPOS/default.htm
http://www.nrf-arts.org/UnifiedPOS/default.htm

Chapter 11: JavaPOS Fingerprint Data for Captures and Enrollment Templates (BIRs)
Fingerprint Data for Captures and Enrollment Templates (BIRs)
The U.are.U JavaPOS API now supports four different JavaPOS biometric information record (BIR) formats, as set
by the Algorithm property:

Identification and verification require that all BIRs be in the same format. Stored enrollment BIRs can be in
four formats:

1. DigitalPersona format (10-byte headers, 45-byte headers or a mixture),

2. ANSI (with 45-byte headers)

3. ISO (with 45-byte headers)

4. JavaPOS 1.x compatible (DigitalPersona format with 10-byte headers).

For example, if the Algorithm property is set to ANSI and you receive ANSI captures, those fingerprints cannot
be matched against templates that are stored in a DigitalPersona format.

The value of the Algorithm property must be set before the device is enabled (i.e., after the device is opened
and claimed, but before it is enabled).

Working with DigitalPersona Record Formats
The format for the new default 45-byte headers is provided in the JavaPOS spec. The first 10 bytes of the 45-
byte header are the same as the previous 10-byte header except for the header version number.

In both 10-byte and 45-byte headers, the 5th byte specifies the header format:

Value Meaning

0 Default (Same as 1)

1 DigitalPersona format with 45-byte header that conforms to JavaPOS 1.13 spec. New captures and enroll-
ments will be done in DigitalPersona format with 45-byte headers. Verify and identify will correctly com-
pare with BIRs that have 45-byte headers, the previous 10-byte headers or a mixture.

2 ANSI INSITS 378-2004. New captures and enrollments will be created in ANSI format with a 45-byte Java-
POS header. Verify and identify will require that all BIRs be in ANSI format.

3 ISO/IEC 19794-2:2005. New captures and enrollments will be created in ISO format with a 45-byte Java-
POS header. Verify and identify will require that all BIRs be in ISO format.

4 JavaPOS 1.x compatible. This is the previous DigitalPersona format with 10-byte header. This format was
the default (and only) format used in the U.are.U UPOS for JavaPOS SDK. New captures and enrollments
will be created in DigitalPersona format with 10-byte headers. Verify and identify will correctly compare
with BIRs that have 10-byte headers.
DigitalPersona U.are.U SDK Developer Guide 77

Chapter 11: JavaPOS Converting to a Different Data Format
 The 5th byte is 0x10 for a 10-byte header

 The 5th byte is 0x20 for a 45-byte header

Converting to a Different Data Format
If you wish to convert to a different data format, you must re-enroll users with the new format. There is no way
to convert data between formats.

Getting Device-Specific Information with DirectIOEvent
The DirectIOEvent event is fired by a Service Object to deliver vendor-specific events to the application. The
U.are.U JavaPOS API uses DirectIOEvent events to notify the application about device connection and
disconnection and intermediate events such as finger touch or removal.

Syntax

upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Properties

This event contains the following attributes:

EventNumber Return Values

These constants are defined in the
com.digitalpersona.javapos.services.biometrics.dpfpconstants class.

Property Type Description

EventNumber int Constants whose specific values are assigned by the Service Object

Data int Not used

Obj object Name of the fingerprint reader

EventNumber Description

DP_EVENT_DISCONNECT The fingerprint reader was disconnected.

DP_EVENT_RECONNECT The fingerprint reader was reconnected.

DP_EVENT_FINGER_TOUCHED The fingerprint reader was touched.
DigitalPersona U.are.U SDK Developer Guide 78

Chapter 11: JavaPOS Implementation Notes
Implementation Notes
The following table provides information about how UPOS and JavaPOS properties, methods, and events are
implemented in the U.are.U JavaPOS API.

DP_EVENT_FINGER_GONE The finger was removed from the fingerprint reader.

DP_EVENT_COMPLETED Capture completed.

DP_EVENT_IMAGE_READY Raw image (from a capture) is available.

DP_EVENT_SAMPLE_QUALITY Information about quality of the sample is available.

Name Implemented Notes about Implementation

UPOS Common Properties

AutoDisable No This property is initialized to false in the open method.
Changing its value will have no effect.

CapCompareFirmwareVersion Yes This property is initialized to false in the open method since
firmware comparison is not supported.

CapPowerReporting Yes This property is initialized to JPOS_PR_NONE in the open
method since power reporting is not supported.

CapStatisticsReporting Yes This property is initialized to false in the open method since
statistics reporting is not supported.

CapUpdateFirmware Yes This property is initialized to false in the open method since
firmware updating is not supported.

CapUpdateStatistics Yes This property is initialized to false in the open method since
statistics updating is not supported.

CheckHealthText Yes This property is initialized to an empty string in the open
method. It is never modified since device health checking is not
supported.

Claimed Yes

DataCount Yes

DataEventEnabled Yes Has value true when an enroll or capture or verify capture is in
progress.

DeviceEnabled Yes Has value true when when the service will return device events.
The Algorithm property cannot be changed when the device is
enabled.
DigitalPersona U.are.U SDK Developer Guide 79

Chapter 11: JavaPOS Implementation Notes
DeviceServiceDescription Yes This property is set to “U.are.U Biometrics Device Service for
JavaPOS, (c) 2007-2012 DigitalPersona, Inc.”

DeviceServiceVersion Yes This property is set to 1013000.

FreezeEvents Yes

PhysicalDeviceDescription Yes This property contains the product name, serial number, and
vendor name for the DigitalPersona device.

PhysicalDeviceName Yes This property contains the product name of the DigitalPersona
device.

PowerNotify Yes This property is initialized to JPOS_PN_DISABLED in the open
method since power reporting is not supported.

PowerState Yes This property is initialized to JPOS_PS_UNKNOWN in the open
method since power reporting is not supported.

State Yes

Specific Properties

Algorithm Yes Specifies the data format used. See Fingerprint Data for Captures
and Enrollment Templates (BIRs) on page 77 for details.

AlgorithmList Yes See Fingerprint Data for Captures and Enrollment Templates
(BIRs) on page 77 for details.

BIR Yes

CapPrematchData Yes This property is initialized to false in the open method since
pre-matching is not supported.

CapRawSensorData Yes

CapRealTimeData Yes This property is initialized to false in the open method.

CapSensorColor Yes This property is initialized to BIO_CSC_GRAYSCALE in the
open method.

CapSensorOrientation Yes This property is initialized to BIO_CSO_NORMAL in the open
method.

CapSensorType Yes This property is initialized to BIO_CST_FINGERPRINT in the
open method.

CapTemplateAdaptation Yes This property is initialized to false in the open method since
template adaptation is not supported.

Name Implemented Notes about Implementation
DigitalPersona U.are.U SDK Developer Guide 80

Chapter 11: JavaPOS Implementation Notes
RawSensorData Yes Unkown OR contains raw sensor data. The data in this property
exists when CapRawSensorData is set to true. and
StatusUpdateEvent triggers.

RealTimeDataEnabled Yes This property is initialized to false in the open.

SensorBPP Yes This property is initialized to 8 in the open method. No other
value is supported.

SensorColor Yes This property is initialized to BIO_CSC_GRAYSCALE in the
open method. No other value is supported.

SensorHeight Yes This property is initialized to 0 in the open method. No other
value is supported.

SensorOrientation Yes This property is initialized to BIO_SO_NORMAL in the open
method. No other value is supported.

SensorType Yes This property is initialized to BIO_ST_FINGERPRINT in the
open method.

SensorWidth Yes This property is initialized to 0 in the open method. No other
value is supported.

UPOS Common Methods

Open Yes

Close Yes

ClaimDevice Yes

ReleaseDevice Yes

CheckHealth Yes Only internal health check is supported. Attempts to perform
an external or interactive check cause an exception to be
thrown.

ClearInput Yes

ClearInputProperties Yes

ClearOutput No This method is not supported by the Biometrics device
category.

DirectIO Partial An exception is thrown since device direct I/O is not supported.

CompareFirmwareVersion Yes An exception is thrown since CapCompareFirmwareVersion is
set to false.

ResetStatistics Yes An exception is thrown since CapUpdateStatistics is set to
false.

Name Implemented Notes about Implementation
DigitalPersona U.are.U SDK Developer Guide 81

Chapter 11: JavaPOS Implementation Notes
RetrieveStatistics Yes An exception is thrown since CapStatisticsReporting is set to
false.

UpdateFirmware Yes An exception is thrown since CapUpdateFirmware is set to
false.

UpdateStatistics Yes An exception is thrown since CapUpdateStatistics is set to
false.

Specific Methods

beginEnrollCapture Yes

beginVerifyCapture Yes

endCapture Yes

identify Yes

identifyMatch Yes

processPrematchData Yes An exception is thrown since CapPrematchData is set to false.

verify Yes

verifyMatch Yes

UPOS Events

DataEvent Yes The following event types are supported:

BIO_DATA_ENROLL - Enrollment template created

BIO_DATA_VERIFY - Verification template created

DirectIOEvent Yes See Getting Device-Specific Information with DirectIOEvent on
page 78 for details.

ErrorEvent Yes resultCode - Standard JavaPOS Result Code

resultCodeExtended - DigitalPersona Result Code - see Device-
Related Error Codes on page 83 for details

errorLocus - EL_INPUT

errorResponse - ER_CLEAR

OutputCompleteEvent No This event is not supported by the Biometrics device category.

StatusUpdateEvent Yes Only occurs when RawSensorData has received a raw image
from a capture.

Name Implemented Notes about Implementation
DigitalPersona U.are.U SDK Developer Guide 82

Chapter 11: JavaPOS Exceptions
Exceptions
The files jpos.Const.* contain the JavaPOS standard exception codes. The following exceptions are
thrown by the U.are.U JavaPOS API:

 JPOS_E_FAILURE

 JPOS_E_ILLEGAL

 JPOS_E_NOHARDWARE

 JPOS_E_TIMEOUT

Device-Related Error Codes
For the device-related result codes returned by EventNumber after the DirectIOEvent event, see EventNumber
Return Values on page 78.

The following error codes are returned in the ResultCodeExtended property of the ErrorEvent object.

IMPORTANT: You should always use the names of the return codes, such as FT_OK, rather than the numeric
values because these values may change at any time, without notice. The numbers are provided
as a reference for the error codes in the sample application.

Value Result Code Description

-1 FT_ERR_NO_INIT The fingerprint feature extraction module or the fingerprint
comparison module is not initialized.

-2 FT_ERR_INVALID_PARAM One or more parameters are not valid.

-4 FT_ERR_IO A generic I/O file error occurred.

-7 FT_ERR_NO_MEMORY There is not enough memory to perform the action.

-8 FT_ERR_INTERNAL An unknown internal error occurred.

-10 FT_ERR_UNKNOWN_DEVICE The requested device is not known.

-11 FT_ERR_INVALID_BUFFER A buffer is not valid.

-33 FT_ERR_UNKNOWN_EXCEPTION An unknown exception occurred.
DigitalPersona U.are.U SDK Developer Guide 83

OPOS 1
DigitalPersona U.are.U SDK Developer Guide
2

The U.are.U OPOS API is built on the U.are.U C/C++ API. The OPOS API is geared for Point of Sale applications
and has the following features:

 Fully compliant with OPOS 1.13. The U.are.U OPOS API conforms to the specifications for the Biometrics
device category in Chapter 5, “Biometrics,” of the UnifiedPOS Retail Peripheral Architecture, Version 1.13
(July 15, 2009). The complete UPOS documentation is available at http://www.nrf-arts.org/UnifiedPOS/
default.htm.

 Backward compatible with DigitalPersona’s previous OPOS product (U.are.U UPOS for OPOS SDK),
with a few minor caveats. This new API is the result of merging the previous OPOS SDK with the U.are.U
SDK. For users of the previous SDK, the updated SDK means an upgraded internal architecture for more
robust performance -- up to ten times faster for identification. If you are upgrading an existing
application, see Upgrading from U.are.U UPOS for OPOS/JavaPOS on page 27 for more details.

 The OPOS API is a set of COM objects that acts as an extension to the DigitalPersona fingerprint reader
driver, providing an OPOS-compliant application interface to DigitalPersona products. It consists of a
Control Object (CO) (an ActiveX® Control) for the OPOS Biometrics device category and a Service Object
(SO).

 Because the OPOS API is built as an adjunct to the C/C++ API, applications can use both the OPOS
standard operations AND use the U.are.U C/C++ API (described in The C/C++ APIs on page 30). C/C++
methods can be used to access streaming features or to import data.

 A complete reference to the controls, properties, methods and events of the OPOS interface is provided in
Appendix A of the UnifiedPOS specification, a PDF document titled “UnifiedPOS Retail Periperal
Architecture.” Download the current version (1.14) from http://www.nrf-arts.org/content/unifiedpos.

Terminology Note
The U.are.U OPOS API conforms to the standard terminology used by the OPOS spec from 2009 whereas the
other APIs in the U.are.U SDK generally use terminology that matches evolving industry standards. If you are
going to use the U.are.U C/C++ API along with OPOS, you need to note that in OPOS, the extracted fingerprint
data (template) is stored in a biometric information record (BIR). The templates created through enrollment and
capture are equivalent to Fingerprint Minutiae Data (FMD) records in the other APIs of the U.are.U SDK. Note
that OPOS templates include a 12- or 45-byte OPOS header in addition to the data itself.

Working with Fingerprint Data in OPOS
The U.are.U OPOS API provides two types of fingerprint data: raw images and fingerprint templates. The data
flow for OPOS applications is the same as described in Chapter 3, Understanding the Data Flow, on page 15
except that OPOS data has additional OPOS headers and OPOS does not use the FID/FMD terminology used by
U.are.U. Note that there is no easy method provided in the API for converting data from OPOS BIRs to FMDs.
84

http://www.nrf-arts.org/content/unifiedpos
http://www.nrf-arts.org/content/unifiedpos
http://www.nrf-arts.org/content/unifiedpos
http://www.nrf-arts.org/UnifiedPOS/default.htm
http://www.nrf-arts.org/UnifiedPOS/default.htm

Chapter 12: OPOS Fingerprint Data for Raw Images (Captures)
Fingerprint Data for Raw Images (Captures)
Per the OPOS spec, raw fingerprint scans (images) are available in the RawSensorData property when
StatusUpdateEvent triggers.

Fingerprint Data for Captures and Enrollment Templates (BIRs)
The U.are.U OPOS API now supports four different OPOS biometric information record (BIR) formats, as set by
the Algorithm property:

Identification and verification require that all BIRs be in the same format. The BIRs can be in four formats:

1. DigitalPersona format (12-byte headers, 45-byte headers or a mixture),

2. ANSI (with 45-byte headers)

3. ISO (with 45-byte headers)

4. OPOS 1.x compatible (DigitalPersona format with 12-byte headers).

For example, if the Algorithm property is set to ANSI and you receive ANSI captures, those fingerprints cannot
be matched against templates that are stored in a DigitalPersona format.

The value of the Algorithm property must be set before the device is enabled (i.e., after the device is opened
and claimed, but before it is enabled).

Value Meaning

0 Default (Same as 1)

1 DigitalPersona format with 45-byte header that conforms to OPOS 1.13 spec. New captures and enroll-
ments will be done in DigitalPersona format with 45-byte headers. Verify and identify will correctly com-
pare with BIRs that have 45-byte headers, the previous 12-byte headers or a mixture.

2 ANSI INSITS 378-2004. New captures and enrollments will be created in ANSI format with a 45-byte OPOS
header. Verify and identify will require that all BIRs be in ANSI format.

3 ISO/IEC 19794-2:2005. New captures and enrollments will be created in ISO format with a 45-byte OPOS
header. Verify and identify will require that all BIRs be in ISO format.

4 OPOS 1.x compatible. This is the previous DigitalPersona format with 12-byte header. This format was the
default (and only) format used in the U.are.U UPOS for OPOS SDK. New captures and enrollments will be
created in DigitalPersona format with 12-byte headers. Verify and identify will correctly compare with
BIRs that have 12-byte headers.
DigitalPersona U.are.U SDK Developer Guide 85

Chapter 12: OPOS Working with DigitalPersona Record Formats
Working with DigitalPersona Record Formats
The format for the new default 45-byte headers is provided in the OPOS spec. The first 12 bytes of the 45-byte
header are the same as the previous 12-byte header except for the header version number.

In both 12-byte and 45-byte headers, the 5th byte specifies the header format:

 The 5th byte is 0x10 for a 12-byte header

 The 5th byte is 0x20 for a 45-byte header

Converting to a Different Data Format
If you wish to convert to a different data format, you must re-enroll users with the new format. There is no way
to convert data between formats.

Getting Device-Specific Information with DirectIOEvent
The DirectIOEvent event is fired by a Service Object to deliver vendor-specific events to the application. The
U.are.U JavaPOS API uses DirectIOEvent events to notify the application about device connection and
disconnection and intermediate events such as finger touch or removal.

This chapter contains specific information about the U.are.U SDK implementation of the OPOS Control.

DataEvent

Syntax

<< event >> upos::events::DataEvent
Status: int32 { read-only }

Description

This event is fired to provide input data from the fingerprint reader to the application. The actual input data is
placed in one or more device-specific properties.

Attribute

This event contains the following attribute:

Attribute Type Description

Status int32 BIO_DATA_ENROLL if enroll capture is completed.

BIO_DATA_VERIFY if verify capture is completed.
DigitalPersona U.are.U SDK Developer Guide 86

Chapter 12: OPOS Getting Device-Specific Information with DirectIOEvent
DirectIOEvent

Syntax

<< event >> upos::events::DirectIOEvent
EventNumber: int32 { read-only }
Data: int32 { read-write }
Obj: object { read-write }

Description

This event is fired by the Service Object (SO) to communicate directly with the application. DirectIOEvent is
used in the U.are.U SDK to notify the user of the image-capturing status, fingerprint reader connection status,
and image quality, etc., whenever required.

Attributes

This event contains the following attributes:

EventNumber Return Values

Attribute Type Description

EventNumber int32 Event number whose specific values are assigned by the SO.

Data int32 Additional numeric data. Specific values vary by the EventNumber and
the SO.

Obj object Additional data whose use varies by the EventNumber and the SO.

EventNumber Description

1 The fingerprint reader was disconnected.

2 The fingerprint reader was reconnected.

3 The fingerprint reader was touched.

4 The finger was removed from the fingerprint reader.

5 A fingerprint image is ready for processing.

6 Provides information about the quality of the fingerprint image.

7 A supplied fingerprint credential was added to the fingerprint enrollment template.

8 The fingerprint capture operation was stopped.
DigitalPersona U.are.U SDK Developer Guide 87

Chapter 12: OPOS Getting Device-Specific Information with DirectIOEvent
Data Return Values

EventNumber1

1. For every other EventNumber (1 through 5 and 8), Data holds the value 0 (Not Supported).

Data Description

6 DP_QUALITY_GOOD,
DP_QUALITY_NONE, etc.

Can be any value from the DP_SAMPLE_QUALITY
enumeration in the table on the next page.

7 1, 2, 3, etc. Holds the number of images added.
DigitalPersona U.are.U SDK Developer Guide 88

Chapter 12: OPOS Getting Device-Specific Information with DirectIOEvent
DP_SAMPLE_QUALITY Enumeration

Obj Return Values

Value Meaning

DP_QUALITY_GOOD (0) The image is of good quality.

DP_QUALITY_NONE (1) There is no image.

DP_QUALITY_TOOLIGHT (2) The image is too light.

DP_QUALITY_TOODARK (3) The image is too dark.

DP_QUALITY_TOONOISY (4) The image is too noisy.

DP_QUALITY_LOWCONTR (5) The image contrast is too low.

DP_QUALITY_FTRNOTENOUGH (6) The image does not contain enough information.

DP_QUALITY_NOCENTRAL (7) The image is not centered.

EventNumber Object

1 The fingerprint reader was disconnected.

2 The fingerprint reader was reconnected.

3 The fingerprint reader was touched.

4 The finger was removed from the fingerprint reader.

5 NULL (Not Supported).

6 Provides information about the quality of the fingerprint image.

7 A supplied fingerprint credential was added to the fingerprint enrollment template.

8 The fingerprint capture operation was stopped.
DigitalPersona U.are.U SDK Developer Guide 89

Chapter 12: OPOS Implementation Notes
StatusUpdateEvent

Syntax

<< event >> upos::events::StatusUpdateEvent
Status: int32 { read-only }

Description

This event is used in the U.are.U SDK to notify the user that a raw image is available for use.

Attribute

This event contains the following attribute:

Status Return Values

Implementation Notes
The following table provides information about how UPOS and JavaPOS properties, methods, and events are
implemented in the U.are.U JavaPOS API.

The following table provides information about how UPOS properties, methods, and events are implemented
in the DigitalPersona U.are.U SDK.

Attribute Type Description

Status int32 The Status parameter notifies the user that raw image data is available.

StatusUpdateEvent Value Meaning

1 BIO_SUE_RAW_DATA Raw image data is available.

Name Implemented1 Comment

UPOS Common Properties

AutoDisable Partial This property is initialized to false in the open method. It is not
modified during execution of the application since it is not
required to automatically disable the device when data is
received.
DigitalPersona U.are.U SDK Developer Guide 90

Chapter 12: OPOS Implementation Notes
BinaryConversion Partial This property is initialized to OPOS_BC_NONE in the open
method and is not modified during execution of the
application.

CapCompareFirmwareVersion Partial This property is initialized to false in the open method. It is not
modified during execution of the application since firmware
version comparison is not supported.

CapPowerReporting Partial This property is initialized to OPOS_PR_NONE in the open
method. It is not modified during execution of the application
since power reporting is not supported.

CapStatisticsReporting Partial This property is initialized to false in the open method. It is not
modified during execution of the application since statistics
reporting is not supported.

CapUpdateFirmware Partial This property is initialized to false in the open method. It is not
modified during execution of the application since firmware
updating is not supported.

CapUpdateStatistics Partial This property is initialized to false in the open method. It is not
modified during execution of the application since statistics
updating is not supported.

CheckHealthText No

Claimed Yes This property is initialized to false in the open method. It is set
to true on claim and set to false again on release.

ControlObjectDescription Yes

ControlObjectVersion Yes

DataCount Partial This property is initialized to 0 in the open method and is not
modified during execution of the application.

DataEventEnabled Partial This property is initialized to false in the open method and is
set to true after a successful claim operation.

DeviceDescription Yes

DeviceEnabled Partial This property is initialized to false in the open method and is
set to true after a successful claim operation. Since the
AutoDisable property is never set to true, DeviceEnabled
always remains true.

DeviceName Yes

FreezeEvents Partial This property is initialized to false in the open method. It is not
modified during execution of the application since it is not
required to freeze events.

Name Implemented1 Comment
DigitalPersona U.are.U SDK Developer Guide 91

Chapter 12: OPOS Implementation Notes
OpenResult Yes

OutputID No This property is not supported by the Biometrics device
category.

PowerNotify Partial This property is initialized to OPOS_PN_DISABLED in the open
method. It is not modified during execution of the application
since power reporting is not supported.

PowerState Partial This property is initialized to OPOS_PS_UNKNOWN in the open
method. It is not modified during execution of the application
since power reporting is not supported.

ResultCode Yes

ResultCodeExtended No

ServiceObjectDescription Yes

ServiceObjectVersion Yes

State Partial This property is initialized to OPOS_S_IDLE in the open method
and is set to OPOS_S_CLOSED in the close method.

Specific Properties

Algorithm Yes See Fingerprint Data for Captures and Enrollment Templates
(BIRs) on page 85 for details.

AlgorithmList Yes See Fingerprint Data for Captures and Enrollment Templates
(BIRs) on page 85 for details.

BIR Yes This property holds the biometric data that is captured and
returned to the application.

CapPrematchData Partial This property is initialized to false in the open method. It is not
modified during execution of the application since the MOC
(Match-on-Card) SmartCard technology needed to generate a
processed BIR based on pre-match data stored on a SmartCard
is not supported.

CapRawSensorData Yes This property is initialized to true in the open method and is
not modified during execution of the application.

CapRealTimeData Partial This property is initialized to false in the open method and is
not modified during execution of the application.

CapSensorColor Yes This property is initialized to BIO_CSC_GRAYSCALE in the open
method and is not modified during execution of the
application.

Name Implemented1 Comment
DigitalPersona U.are.U SDK Developer Guide 92

Chapter 12: OPOS Implementation Notes
CapSensorOrientation Yes This property is initialized to BIO_CSO_INVERTED in the open
method and is not modified during execution of the
application.

CapSensorType Yes This property is initialized to BIO_CST_FINGERPRINT in the
open method and is not modified during execution of the
application.

CapTemplateAdaptation Partial This property is initialized to false in the open method. It is not
modified during the execution of the application since
template adaptation is not supported.

RawSensorData Yes This property holds the raw biometric data that is captured and
returned to the application.

RealTimeDataEnabled Partial This property is initialized to false in the open method and is
not modified during execution of the application.

SensorBPP Yes This property is initialized by invoking the DigitalPersona
function that defines the image resolution, in pixels.

SensorColor Yes This property is initialized by invoking the DigitalPersona
function that defines the image type.

SensorHeight Yes This property is initialized by invoking the DigitalPersona
function that defines the image height, in pixels.

SensorOrientation Yes This property is initialized to BIO_SO_INVERTED in the open
method and is not modified during execution of the
application.

SensorType Yes This property is initialized to BIO_ST_FINGERPRINT in the open
method and is not modified during execution of the
application.

SensorWidth Yes This property is initialized by invoking the DigitalPersona
function that defines the image width, in pixels.

Common Methods

Open Yes

Close Yes

ClaimDevice Yes

ReleaseDevice Yes

CheckHealth No

ClearInput No

Name Implemented1 Comment
DigitalPersona U.are.U SDK Developer Guide 93

Chapter 12: OPOS Implementation Notes
ClearInputProperties No

ClearOutput No This method is not supported by the Biometrics device
category.

DirectIO No

CompareFirmwareVersion No

ResetStatistics No

RetrieveStatistics No

UpdateFirmware No

UpdateStatistics No

Specific Methods

beginEnrollCapture Yes

beginVerifyCapture Yes

endCapture Yes

identify Yes

identifyMatch Yes

processPrematchData No

verify Yes

verifyMatch Yes

Events

DataEvent Yes Valid values for Status parameter are

1- BIO_DATA_ENROLL if enroll capture is completed.

2- BIO_DATA_VERIFY if verify capture is completed.

Name Implemented1 Comment
DigitalPersona U.are.U SDK Developer Guide 94

Chapter 12: OPOS Implementation Notes
DirectIOEvent Specific Return values are

1 - DP_DIOE_DISCONNECT

2 - DP_DIOE_RECONNECT

3 - DP_DIOE_FINGER_TOUCHED

4 - DP_DIOE_FINGER_GONE

5 - DP_DIOE_IMAGE_READY

6 - DP_DIOE_SAMPLE_QUALITY

7 - DP_DIOE_ENROLL_FEATURES_ADDED

8 - DP_DIOE_OPERATION_STOPPED

ErrorEvent Yes ResultCode - Standard OPOS Result Code

Specific ResultCodeExtended - DigitalPersona Result Code

Yes ErrorLocus - EL_INPUT

Yes ErrorResponse - ER_CLEAR

OutputCompleteEvent No This event is not supported by the Biometrics device category.

StatusUpdateEvent Partial Valid values for Status parameter are

1 - BIO_SUE_RAW_DATA

1. Yes = Fully implemented
No = Not implemented
Partial = Implemented, but not all features are available
Specific = Implemented with device-specific features or data

Name Implemented1 Comment
DigitalPersona U.are.U SDK Developer Guide 95

Chapter 12: OPOS Exceptions
Exceptions
The files jpos.Const.* contain the JavaPOS standard exception codes. The following exceptions are
thrown by the U.are.U JavaPOS API:

 JPOS_E_FAILURE

 JPOS_E_ILLEGAL

 JPOS_E_NOHARDWARE

 JPOS_E_TIMEOUT

Device-Related Error Codes
For the device-related result codes returned by EventNumber after the DirectIOEvent event, see EventNumber
Return Values on page 87.

The following error codes are returned in the ResultCodeExtended property of the ErrorEvent object.

IMPORTANT: You should always use the names of the return codes, such as FT_OK, rather than the numeric
values because these values may change at any time, without notice. The numbers are provided
as a reference for the error codes in the sample application.

HERE IS THE TABLE FROM PREV OPOS DOC:

The table below defines DigitalPersona device-related result codes returned to the ResultCodeExtended
parameter of the ErrorEvent event.

Value Result Code Description

-1 FT_ERR_NO_INIT The fingerprint feature extraction module or the fingerprint
comparison module is not initialized.

-2 FT_ERR_INVALID_PARAM One or more parameters are not valid.

-4 FT_ERR_IO A generic I/O file error occurred.

-7 FT_ERR_NO_MEMORY There is not enough memory to perform the action.

-8 FT_ERR_INTERNAL An unknown internal error occurred.

-10 FT_ERR_UNKNOWN_DEVICE The requested device is not known.

-11 FT_ERR_INVALID_BUFFER A buffer is not valid.

-33 FT_ERR_UNKNOWN_EXCEPTION An unknown exception occurred.
DigitalPersona U.are.U SDK Developer Guide 96

Chapter 12: OPOS Device-Related Error Codes
.

Value Result Code Description

0 FT_OK The function succeeded.

1 FT_WRN_NO_INIT The fingerprint feature extraction module or the fingerprint
comparison module are not initialized.

8 FT_WRN_INTERNAL An internal error occurred.

9 FT_WRN_KEY_NOT_FOUND The fingerprint feature extraction module or the fingerprint
comparison module could not find an initialization setting.

11 FT_WRN_UNKNOWN_DEVICE The fingerprint reader is not known.

12 FT_WRN_TIMEOUT The function has timed out.

-1 FT_ERR_NO_INIT The fingerprint feature extraction module or the fingerprint
comparison module is not initialized.

-2 FT_ERR_INVALID_PARAM One or more parameters are not valid.

-3 FT_ERR_NOT_IMPLEMENTED The called function was not implemented.

-4 FT_ERR_IO A generic I/O file error occurred.

-7 FT_ERR_NO_MEMORY There is not enough memory to perform the action.

-8 FT_ERR_INTERNAL An unknown internal error occurred.

-9 FT_ERR_BAD_INI_SETTING Initialization settings are corrupted.

-10 FT_ERR_UNKNOWN_DEVICE The requested device is not known.

-11 FT_ERR_INVALID_BUFFER A buffer is not valid.

-16 FT_ERR_FEAT_LEN_TOO_SHORT The specified fingerprint feature set or fingerprint template buffer size
is too small.

-17 FT_ERR_INVALID_CONTEXT The given context is not valid.

-29 FT_ERR_INVALID_FTRS_TYPE The feature set purpose is not valid.

-32 FT_ERR_FTRS_INVALID Decrypted fingerprint features are invalid. Decryption may have failed.

-33 FT_ERR_UNKNOWN_EXCEPTION An unknown exception occurred.
DigitalPersona U.are.U SDK Developer Guide 97

Application Notes 1
DigitalPersona U.are.U SDK Developer Guide
3

This chapter describes some suggestions for troubleshooting your application.

General Fingerprint Issues
It is very important that you test your application with multiple and diverse people. The readability of
fingerprints is affected by many factors including wear and tear, skin dryness, and age.

The middle finger often gives better scans than the index finger because the middle finger is typically less
worn. We recommend that you enroll more than one finger for each user, preferably at least the index and
middle fingers.

C/C++ Issues
The dpfj_identify function returns DPFJ_SUCCESS if it is able to do identification (i.e., the FMDs are
valid and correctly formed). However that does not mean that a candidate was found. You must check the
number of returned candidates to see if any actual matches were found.

The dpfj_compare function returns DPFJ_SUCCESS if it is able to do the requested comparison (i.e., the
FMDs are valid and correctly formed). However that does not mean that the fingerprints matched. To check
whether they matched, you must look at the dissimilarity score (0=no match, maxint=perfect match,
maxint-threshold = acceptable match).
98

Glossary 1
DigitalPersona U.are.U SDK Developer Guide
4

General Terms

Fingerprint
The impression left from the friction ridges of a human
finger.

Fingerprint characteristics
The biological finger surface details that can be detected
and from which distinguishing and repeatable fingerprint
features can be extracted.

Fingerprint minutiae
The fingerprint characteristics commonly used in
fingerprint recognition systems. Fingerprint minutiae
include:

· Ridge ending – the abrupt end of a ridge

· Ridge bifurcation – a single ridge that divides into
two ridges

· Short ridge, or independent ridge – a ridge that
commences, travels a short distance and then
ends

· Island – a single small ridge inside a short ridge or
ridge ending that is not connected to all other
ridges

· Ridge enclosure – a single ridge that bifurcates
and reunites shortly afterward to continue as a
single ridge

· Spur – a bifurcation with a short ridge branching
off a longer ridge

· Crossover or bridge – a short ridge that runs
between two parallel ridges

· Delta – a Y-shaped ridge meeting

· Core – a U-turn in the ridge pattern.

Fingerprint Data

Fingerprint sample
An analog or digital representation of a fingerprint
obtained from a fingerprint capture device. See also
fingerprint image.

Fingerprint image
A digital representation of a fingerprint sample encoded as
a spatially mapped array of pixels. A fingerprint image is the
only representation of a fingerprint sample supported by
DigitalPersona products, thus the terms fingerprint image
and fingerprint sample are used interchangeably.

Fingerprint features
The digital representation of fingerprint characteristics.

Fingerprint Image Data (FID)
The binary data containing one or more fingerprint images
from one or multiple fingers of the same person.

Fingerprint Image View (FIV)
The part of an FID that contains a fingerprint image from a
single impression of a single finger.

In the majority of cases, an FID contains only one FIV.

Fingerprint Minutiae Data (FMD)
The digital representation of fingerprint minutiae, and
optionally other fingerprint characteristics, from one or
multiple fingers of the same person.

Fingerprint Minutiae View (FMV)
The part of an FMD that contains fingerprint features from a
single impression of a single finger.

Typically FMDs contain only one FMV.

Fingerprint template
The fingerprint minutiae data that is stored as a result of the
enrollment process.
99

Chapter 14: Glossary Fingerprint Devices
Fingerprint Devices

Fingerprint capture device
A device that collects a signal of fingerprint characteristic
and outputs a fingerprint sample. This device can consist of
one or more components, including hardware and
supporting software. For example, a fingerprint capture
device may include a camera, photographic paper, a
printer, and/or a digital scanner.

Fingerprint reader
A fingerprint capture device that obtains a fingerprint image
by direct interaction with a finger.

Fingerprint Recognition Terms

Capture
The process of acquiring a fingerprint image from a
fingerprint reader or fingerprint capture device.

Enrollment
The process of capturing a fingerprint image(s) for an
individual, extracting fingerprint features, optionally
checking for duplicates, and storing the fingerprint features
(fingerprint template). See also FMD, Fingerprint Template.

Comparison
The function which, given two fingerprints computes a
comparison score.

Comparison score
A comparison score is a numerical value resulting from the
comparison of the fingerprint features of two fingerprints.

Comparison scores are of two types: similarity scores and
dissimilarity scores.

Comparison scores are calculated using algorithms that are
specific to the fingerprint recognition system and,
optionally, can be normalized in order to maintain a

constant score distribution of impostor verification
attempts or open set identification attempts.

Similarity Score

See comparison score.

Dissimilarity Score

See comparison score.

Fingerprint Recognition

Verification or identification.

Verification
The process of

1. Capturing a fingerprint image from an individual,

2. Extracting fingerprint features,

3. Comparing the captured image’s fingerprint
features with the fingerprint template(s) of the
enrollee this individual claims to be and

4. Making the match/non-match decision.

Verification Threshold

The maximum degree of dissimilarity that is allowed
between a fingerprint image and a fingerprint template in
order to make the match decision during the verification
process.

Match decision or match
A decision that two fingerprints are from the same finger
(meet the verification threshold).

Non-match decision or non-match
A decision that two fingerprints are not from the same
finger (do not meet the verification threshold).

Identification
The process of

1. Capturing a fingerprint image from an individual,

2. Extracting fingerprint features and
DigitalPersona U.are.U SDK Developer Guide 100

Chapter 14: Glossary Recognition Accuracy
3. Comparing the captured image’s fingerprint
features with the fingerprint templates from
multiple individuals in order to create a candidate
list of fingerprints that meet the identification
threshold.

Identification Threshold

The maximum degree of dissimilarity that is allowed
between a fingerprint image and a fingerprint template in
order to call the fingerprint template a candidate in the
identification process.

Candidate
A fingerprint template that is determined to be similar to a
given FMD during identification.

Recognition Accuracy
The terminology below is used when discussing testing
processes and reporting accuracy for fingerprint-enabled
applications.

Genuine verification attempt
An attempt to compare fingerprint features with a
fingerprint template where the fingerprint features and
fingerprint template are from the same individual, and the
fingerprint features and fingerprint template were captured
at different times (recommended at least 2-3 weeks apart).

Impostor verification attempt
An attempt to compare fingerprint features with a
fingerprint template, where the fingerprint features and
fingerprint template are from two different people.

False match rate (FMR)
The ratio between the number of impostor verification
attempts that produced a match decision and the total
number of impostor verification attempts. See also FAR.

False non-match rate (FNMR)
The ratio between the number of genuine verification
attempts that produced a non-match decision and the total
number of genuine verification attempts. See also FRR.

False Accept Rate (FAR)
The application-specific measure of how often the
application falsely grants a request.

In authentication applications, FAR is used in place of FMR.

False Reject Rate (FRR)
The application-specific measure of how often the
application falsely rejects a request.

In authentication applications, FRR is used in place of
FNMR.

Verification Detection Error Trade-off
(DET) curve
A parametric curve that plots FMR on the x-axis and FNMR
on the y-axis as a function of the verification threshold.

Probe
In simulation tests, a fingerprint used in searches
(analogous to the user fingerprint used by a real
application for searching).

Gallery
In simulation tests, a set of enrolled fingerprints (fingerprint
templates) used for comparison purposes (analogous to
the database of enrolled fingerprint templates used by a
real application).

Open set identification attempt
For the purpose of testing, an attempt to compare a probe
against a gallery that does not contain any impressions
from any finger of the individual whose finger was used as
the probe.
DigitalPersona U.are.U SDK Developer Guide 101

Chapter 14: Glossary Recognition Accuracy
Closed set identification attempt
For the purpose of testing, an attempt to compare a probe
against a gallery, where the gallery includes a fingerprint
template from the same finger (from the same person) as
used for the probe. The probe and the corresponding
fingerprint template should be captured at different times
(recommended at least 2-3 weeks apart).

False positive identification rate (FPIR)
Proportion of identification requests that return a
candidate even though the person is not enrolled.

More precisely, for the purpose of recognition accuracy
testing, the ratio between the number of open set
identification attempts that returned one or more
candidates and the total number of open set identification
attempts.

False negative identification rate (FNIR)
Proportion of identification requests by enrollees that do
not return the correct candidate.

More precisely, for the purpose of recognition accuracy
testing, the ratio between the number of closed set
identification attempts that did not return the correct
candidate and the total number of closed set identification
attempts.

Identification detection error trade-off
(DET) curve
A parametric curve that plots FPIR on the x-axis and FNIR
on the y-axis as a function of the identification threshold.

The Identification DET curve depends on the gallery size.
Typically, multiple identification DET curves are shown on
the same plot, one for each gallery size.
DigitalPersona U.are.U SDK Developer Guide 102

	Table of Contents
	Introduction
	What’s New in 2.2.x
	How the U.are.U Manuals are Organized
	Getting Updated Documentation
	Target Audience
	Chapter Overview
	Data Formats and Standards

	Background
	Biometrics
	Features of Biometric Technology

	The Basics of Fingerprint Identification
	Fingerprint Characteristics

	Issues in Fingerprint Recognition Technology

	Developing Applications
	How Fingerprint Recognition Works
	Understanding the Data Flow
	Workflow - Enrollment Application
	Step One - Initialization
	Step Two - Capture, Extract and Enroll
	Step Three - Store Data
	Notes on Enrollment

	Workflow - Identifying/Verifying
	Step One - Initialization
	Step Two - Capture and Extract
	Step Three - Identify/Verify

	Design Issues for your Application
	Distributed Processing and Data Flow
	Data Compression
	WSQ Compression
	JPEG2000 Compression

	NIST Fingerprint Image Quality (NFIQ)
	Determining an Acceptable Level of Error
	Setting the Error Threshold when Identifying a Fingerprint in a Collection

	Defining the Data Retention Policy
	Specifying the Fingers to Be Scanned
	Optimizing Fingerprint Applications

	Working with Fingerprint Readers
	Upgrading from Previous SDKs
	Overview of Support for Previous SDKs
	Working with Existing Data Created with Previous SDKs
	Exchanging Data with Applications Using Previous SDKs
	Upgrading Applications from Previous SDKs

	Converting Applications from One Touch SDK
	Working with Data Created with Gold and One Touch SDKs
	Changes in U.are.U Terminology from Previous Usage (Gold and One Touch)
	Upgrading from U.are.U UPOS for OPOS/JavaPOS

	Using the SDK
	What’s In the SDK?
	FingerJet Engine

	The C/C++ APIs
	DP Capture API
	Library Management
	Fingerprint Capture Device Management
	Capturing Fingerprints
	Streaming Fingerprints

	FingerJet Engine API
	Library Management
	Extract FMD
	Identify Fingerprint
	Enrollment
	Format Conversion

	Advanced Diagnostics
	Wavelet Scalar Quantization (WSQ) Compression
	NIST Fingerprint Image Quality (NFIQ)

	The Java API
	Importing the U.are.U Java package
	Getting Detailed Documentation
	Using the Package
	Main Access Point
	UareUException
	Getting a List of Available Readers

	Working with Readers
	Capturing Fingerprints
	Streaming Fingerprints

	Accessing the FingerJet Engine
	Creating FMDs from images
	Identification and Comparison
	Enrollment

	The .NET API
	Importing the U.are.U .NET package
	Getting Detailed Documentation
	Using the Package
	Main Access Points
	SDKException
	Serialization
	IEnumerables in the .NET Wrapper

	Working with Readers
	Capturing Fingerprints
	Streaming Fingerprints

	Managing Fingerprint Data
	Analyzing and Managing Fingerprints (FingerJet Engine)
	Creating FMDs from images
	Comparing Fingerprints
	Enrollment
	Common Data Structures for Results
	Pre-Built Controls for Enrollment and Identification

	ActiveX
	Importing the U.are.U ActiveX package
	Getting Detailed Documentation
	Using the Package
	Main Access Points
	SDKException
	Serialization

	Working with Readers
	A Note About Internet Explorer and Process Merging
	Class Diagrams
	Capturing Fingerprints
	Streaming Fingerprints

	Managing Fingerprint Data
	Accessing the FingerJet Engine
	Creating FMDs from images
	Identification and Comparison
	Enrollment
	Common Data Structures for Results
	Pre-Built Controls for Enrollment and Identification

	JavaPOS
	Terminology Note
	Working with Fingerprint Data in JavaPOS
	Fingerprint Data for Raw Images (Captures)
	Fingerprint Data for Captures and Enrollment Templates (BIRs)
	Working with DigitalPersona Record Formats
	Converting to a Different Data Format

	Getting Device-Specific Information with DirectIOEvent
	Syntax
	Properties
	EventNumber Return Values

	Implementation Notes
	Exceptions
	Device-Related Error Codes

	OPOS
	Terminology Note
	Working with Fingerprint Data in OPOS
	Fingerprint Data for Raw Images (Captures)
	Fingerprint Data for Captures and Enrollment Templates (BIRs)
	Working with DigitalPersona Record Formats
	Converting to a Different Data Format

	Getting Device-Specific Information with DirectIOEvent
	Syntax
	Description
	Attribute
	Syntax
	Description
	Attributes
	EventNumber Return Values
	Data Return Values
	Obj Return Values
	Syntax
	Description
	Attribute
	Status Return Values

	Implementation Notes
	Exceptions
	Device-Related Error Codes

	Application Notes
	General Fingerprint Issues
	C/C++ Issues

	Glossary
	General Terms
	Fingerprint Data
	Fingerprint Devices
	Fingerprint Recognition Terms
	Recognition Accuracy

